Terrestrial biosphere changes over the last 120 kyrHoogakker, B. A. A., Smith, R. S. ORCID: https://orcid.org/0000-0001-7479-7778, Singarayer, J. S., Marchant, R., Prentice, I. C., Allen, J. R. M., Anderson, R. S., Bhagwat, S. A., Behling, H., Borisova, O., Bush, M., Correa-Metrio, A., de Vernal, A., Finch, J. M., Fréchette, B., Lozano-Garcia, S., Gosling, W. D., Granoszewski, W., Grimm, E. C., Grüger, E. , Hanselman, J., Harrison, S. P. ORCID: https://orcid.org/0000-0001-5687-1903, Hill, T. R., Huntley, B., Jiménez-Moreno, G., Kershaw, P., Ledru, M.-P., Magri, D., McKenzie, M., Müller, U., Nakagawa, T., Novenko, E., Penny, D., Sadori, L., Scott, L., Stevenson, J., Valdes, P. J., Vandergoes, M., Velichko, A., Whitlock, C. and Tzedakis, C. (2016) Terrestrial biosphere changes over the last 120 kyr. Climate of the Past, 12 (1). pp. 51-73. ISSN 1814-9324
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.5194/cp-12-51-2016 Abstract/SummaryA new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with sim- ulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Simulated biome distribu- tions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those in- ferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large- scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are re- flected in BIOME4 simulations of global net primary pro- ductivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composi- tion of seawater as terrestrial carbon is depleted in 13C.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |