1. Steinberg, D. Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem. 1997, 272, 20963-20966.
2. Hansson, G. K. Mechanism of disease: Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685 – 95.
3. Siekmeier, R.; Steffen, C.; Marz W. Role of oxidants and antioxidants in atherosclerosis: Results of in vitro and in vivo investigations. J. Cardiovasc. Pharmacol. Ther. 2007, 12, 265-291.
4. Esterbauer, H.; Striegl, G.; Puhl, H.; Rothender M. Continuous montoring of in vitro oxidation of human low density lipoprotein. Free Rad. Res. Comm. 1989, 6, 67-75.
5. Schnitzer, E.; Pinchuk, I.; Bor, A.; Fainaru, M.; Lichtenberg, D. The effect of albumin on copper-induced LDL oxidation. Biochim. Biophys. Acta. 1997, 1344, 300-311.
6. Carr, A.C. ; Zhu, B.Z. ; Frei, B. Potential antiatherogenic mechanisms of ascorbate (vitamin C) and α-tocopherol (vitamin E). Circulation. 2000, 87, 349-354.
7. Wu, C.H.; Lin, J.A.; Hsieh, W.C.; Yen, G.C. Low-Density-Lipoprotein (LDL)-Bound Flavonoids Increase the Resistance of LDL to Oxidation and Glycation under Pathophysiological Concentrations of Glucose in Vitro. J.Agric.Food Chem. 2009, 57, 5058-5064.
8. Yukawa, G.S.; Mune, M.; Otani, H.; Tone, Y.; Liang, X.M.; Iwahashi, H.; Sakamoto, W. Effects of coffee consumption on oxidative susceptibility of low-density lipoproteins and serum lipid levels in humans. Biochem. (Mosc). 2004, 69, 70-74.
9. Farah, A.; Monteiro, M.; Donangelo, C.M.; Lafay, S. Chlorogenic Acids from Green Coffee Extract are Highly Bioavailable in Humans. J. Nutr. 2008, 138, 2309-2315.
10. Huang, B.X.; Kim, H.Y.; Dass, C. Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. J.Amer.Soc.Mass Spec. 2004, 15, 1237-1247.
11. Rawel, H.M.; Frey, S.K.; Meidtner, K.; Kroll, J.; Schweigert, F.J. Determining the binding affinities of phenolic compounds to proteins by quenching of the intrinsic tryptophan fluorescence. Mol.Nutr.Food Res. 2006, 50, 705-713.
12. Rohn, S; Rawel, HM; Kroll, J. Antioxidant activity of protein-bound quercetin. J.Agric.Food Chem. 2004, 52, 4725-4729.
13. Leigh-Firbank, E.C.;, Minihane, A.M.; Leake, D.S.; Wright, J.W.; Murphy, M.C.; Griffin, B.A.; Williams, C.M.. Eicosapentanoic acid and docosahexanoic differential associations with lipid responses. Brit. J. Nutr. 2002, 87, 435-445.
14. Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265-275.
15. Soares, S.; Mateus, N.; Freitas, V. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary α-amylase (HSA) by fluorescence quenching. J. Agric. Food Chem. 2007, 55, 6726-6735.
16. Johansson, J. S., Binding of the volatile anaesthetic chloroform to albumin demonstrated using tryptophan fluorescence quenching. J. Biol. Chem. 1997, 272, 17961 – 17965.
17. Kang , J.; Liu, Y.; Xie, M-X.; Li, S.; Jiang, M.; Wang, Y-D. Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochim.Biophys.Acta 2004, 1674, 205-214.
18. Ivanov, V.; Carr, A.C.; Frei, B. 2001. Red wine antioxidants bind to human lipoproteins and protect them from metal ion-dependent and -independent oxidation. J.Agric.Food Chem. 2001, 49, 4442-4449.
19. Meyer, A.S., Donovan JL, Pearson DA, Waterhouse AL, Frankel EN. Fruit hydroxycinnamic acids inhibit human low-density lipoprotein oxidation in vitro. J. Agric. Food Chem. 1998, 46, 1783-1787.
20. Cheng, J.C.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z.L. Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: mechanism and structure-activity relationship. Food Chem. 2007, 104, 132-139.
21. Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152-159.
22. Nardini, M.; Daquino, M.; Tomassi, G.; Gentili, V.; Difelice, M.; Scaccini, C. Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radical Biol. Med. 1995, 19, 541-552.
23. Kiss, T.; Nagy, G.; Pecsi, M.; Kozlowski, H.; Micera, G.; Erre, L.S. Complexes of 3,4-dihydroxyphenyl derivatives- x copper(II)complexes of chlorogenic acid and related compounds. Polyhedron. 1989, 8, 2345-2349.
24. Roland, A.; Patterson, R.A.; Leake, D.S. Measurement of copper-binding sites on low density lipoprotein. Arterioscler., Thromb., Vasc. Biol. 2001, 21, 594-602.
25. Born, M.; Carrupt, P.A.; Zini, R.; Bree, F.; Tillement, J.P.; Hostetmann, K.; Testa, B. Electrochemical behaviour and antioxidant activity of some natural polyphenols. Helv.Chim.Acta. 1996, 79, 1147-1158.
26. Yang, C.Y., Chen, S.H., Gianturco, S.H., Bradley, W.A., Sparrow, J.T., Tanimura, M., Li, W.H., Sparrow, D.A., Deloof, H., Rosseneu, M., Lee, F.S., Gu, Z.W., Gotto, A.M., Chan, L. Sequence, structure, receptor-binding domains and internal repeats of human apolipoprotein-B-100. Nature, 1986, 323, 738-742.
27. Masuoka,J.; Hegenauer, J.; Vandyke, B.R.; Saltman P.. Intrinsic stoichiometric equilibrium constants for the binding of zinc(II) and copper(II) to the high affinity site of serum albumin. J. Biol. Chem. 1993, 268, 21533-21537.
28. Zgirski, A.; Frieden, E. A kinetic study on the distribution of Cu(II)-ions between albumin and transferrin. J. Inorg. Biochem. 1990, 39, 137-148.
29. Zhang Y, Akilesh S, Wilcox DE. Isothermal titration calorimetry measurements of Ni(II) and Cu(II) binding to His, GlyGlyHis, HisGlyHis, and bovine serum albumin: A critical evaluation. Inorg.Chem., 2000, 39, 3057-3064.
30. Ehrenwald, E.; Chisolm, G.M.; Fox, P.L. Intact human ceruloplasmin oxidatively modifies low density lipoproteins. J. Clin Invest. 1994, 93, 1493-1501.
31. Lamb, D.J.; Leake, D.S. Acidic pH enables ceruloplasmin to catalyse the modification of low density lipoprotein. FEBS Lett. 1994, 338, 122-126.
32. Wang, W.Q.; Goodman, M.T. Antioxidant property of dietary phenolic agents in a human LDL-oxidation ex vivo model: interaction of protein binding activity. Nutr. Res. 1999, 19, 191-202.
33. Giessauf, A.; Steiner, E.; Esterbauer, H. Early destruction of tryptophan residues of apolipoprotein B is a vitamin E-independent process during copper-mediated oxidation of LDL. Biochim. Biophys. Acta-Lipids and Lipid Metabolism, 1995, 1256, 221-232.