Implicit equal-weights particle filterZhu, M., Van Leeuwen, P. J. and Amezcua, J. (2016) Implicit equal-weights particle filter. Quarterly Journal of the Royal Meteorological Society. ISSN 0035-9009
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1002/qj.2784 Abstract/SummaryFilter degeneracy is the main obstacle for the implementation of particle filter in non-linear high-dimensional models. A new scheme, the implicit equal-weights particle filter (IEWPF), is introduced. In this scheme samples are drawn implicitly from proposal densities with a different covariance for each particle, such that all particle weights are equal by construction. We test and explore the properties of the new scheme using a 1,000-dimensional simple linear model, and the 1,000-dimensional non-linear Lorenz96 model, and compare the performance of the scheme to a Local Ensemble Kalman Filter. The experiments show that the new scheme can easily be implemented in high-dimensional systems and is never degenerate, with good convergence properties in both systems.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |