Accessibility navigation

Combining large model ensembles with extreme value statistics to improve attribution statements of rare events

Sippel, S., Mitchell, D., Black, M. T., Dittus, A. J., Harrington, L., Schaller, N. and Otto, F. E. L. (2015) Combining large model ensembles with extreme value statistics to improve attribution statements of rare events. Weather and Climate Extremes, 9. pp. 25-35. ISSN 22120947

Text (Open access) - Published Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.wace.2015.06.004


Gaining a better understanding of rare weather events is a major research challenge and of crucial re- levance for societal preparedness in the face of a changing climate. The main focus of previous studies has been to apply a range of relatively distinct methodologies to constrain changes in the odds of those events, including both parametric statistics (extreme value theory, EVT) and empirical approaches based on large numbers of dynamical model simulations. In this study, the applicability of EVT in the context of probabilistic event attribution is explored and potential combinations of both methodological frameworks are investigated. In particular, this study compares empirical return time estimates derived from a large model ensemble with parametric in- ferences from the same data set in order to assess whether statements made about events in the tails are similar. Our analysis is illustrated using a case study of cold extremes and heavy rainfall in winter 2013/ 14 in Europe (focussing on two regions: North-West Russia and the Iberian Peninsula) for a present-day (including ‘anthropogenic’ influences) and an alternative ‘non-industrial’ climate scenario. We show that parametric inferences made about rare ‘extremes’ can differ considerably from esti- mates based on large ensembles. This highlights the importance of an appropriate choice of block and sample sizes for parametric inferences of the tails of climatological variables. For example, inferences based on annual extremes of daily variables are often insufficient to characterize rare events due to small sample sizes (i.e. with return periods >100 years). Hence, we illustrate how a combination of large numerical simulations with EVT might enable a more objective assessment of EVT parameters, such as block and sample size, for any given variable, region and return period of interest. By combining both methodologies, our case study reveals that a distinct warming of cold extremes in winter has occurred throughout Europe in the ‘anthropogenic’ relative to the non-industrial climates for given sea surface temperatures in winter 2013/14. Moreover, heavy rainfall events have become sig- nificantly more frequent and more pronounced in North and North-East Europe, while other regions demonstrate no discernible changes. In conclusion, our study shows that EVT and empirical estimates based on numerical simulations can indeed be used to productively inform each other, for instance to derive appropriate EVT parameters for short observational time series. Further, the combination of ensemble simulations with EVT allows us to significantly reduce the number of simulations needed for statements about the tails.

Item Type:Article
Divisions:No Reading authors. Back catalogue items
Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:72420


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation