Accessibility navigation

Using lagged covariances in data assimilation

Thomas, C. M. and Haines, K. (2017) Using lagged covariances in data assimilation. Tellus A: Dynamic Meteorology and Oceanography, 69 (1). 1377589. ISSN 1600-0870

Text (Open access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

[img] Text - Accepted Version
· Restricted to Repository staff only


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1080/16000870.2017.1377589


This paper describes a novel method to incorporate significantly time-lagged data into a sequential variational data assimilation framework. The proposed method can assimilate data that appear many assimilation window lengths in the future, providing a mechanism to gradually dynamically adjust the model towards those data. The method avoids the need for an adjoint model, significantly reducing computational requirements compared to standard 4DVar. Simulation studies are used to test the assimilation methodology in a variety of situations. The use of lagged covariances is shown to provide robust improvements to the assimilation quality, particularly if data at multiple lags are used to influence the cost function in each window. The methodology developed can be used to improve contemporary global reanalyses by incorporating time-lagged observations that may otherwise not be exploited to their full potential.

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > National Centre for Earth Observation (NCEO)
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:72486
Publisher:Taylor & Francis


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation