Accessibility navigation


Potential volcanic impacts on future climate variability

Bethke, I., Outten, S., Otterå, O. H., Hawkins, E. ORCID: https://orcid.org/0000-0001-9477-3677, Wagner, S., Sigl, M. and Thorne, P. (2017) Potential volcanic impacts on future climate variability. Nature Climate Change, 7 (11). pp. 799-805. ISSN 1758-678X

[img]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.

5MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1038/nclimate3394

Abstract/Summary

Volcanic activity plays a strong role in modulating climate variability (ref. 1). Most model projections of the twenty-first century, however, under-sample future volcanic effects by not representing the range of plausible eruption scenarios (ref. 2,3,4). Here, we explore how sixty possible volcanic futures, consistent with ice-core records (ref. 5), impact climate variability projections of the Norwegian Earth System Model (NorESM) (ref. 6) under RCP4.5 (ref. 7). The inclusion of volcanic forcing enhances climate variability on annual-to-decadal timescales. Although decades with negative global temperature trends become ∼50% more commonplace with volcanic activity, these are unlikely to be able to mitigate long-term anthropogenic warming. Volcanic activity also impacts probabilistic projections of global radiation, sea level, ocean circulation, and sea-ice variability, the local-scale effects of which are detectable when quantifying the time of emergence (ref. 8). These results highlight the importance and feasibility of representing volcanic uncertainty in future climate assessments.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:74097
Publisher:Nature Publishing Group

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation