• Clayson, C.A.; Chen,A. Sensitivity of a coupled single-columnmodel in the Tropics to treatments of the interfacial parameterizations. J. Clim. 2002, 30, 1805–1831, doi:10.1175/1520-0442(2002)015<1805:SOACSC>2.0.CO;2.
• Webster, P.J.; Clayson, C.A.; Curry, J.A. Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropicalWestern Pacific. J. Clim. 1996, 9, 1712–1730.
• Zhang, Y.; Vallis, G.K. Ocean heat uptake in eddying and non-eddying ocean circulation models in a warming climate. J. Phys. Oceanogr. 2013, 43, 2211–2229, doi:10.1175/JPO-D-12-078.1.
• Boyle, E.A.; Keigwin, L. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 1987, 330, 35–40.
• Delworth, T.; Manabe, S.; Stouffer, R.J. Interdecadal variations in the thermohaline circulation in a coupled ocean-atmospere model. J. Clim. 1993, 6, 1993–2011.
• Chelton, D.B.; Xie, S.-P. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography 2010, 23, 52–69.
• Minobe, S.; Kuwano-Yoshida, A.; Komori, N.; Xie, S.-P.; Smal, R.J. Influence of the Gulf Stream on the troposphere. Nature 2008, 452, 206–209, doi:10.1038/nature06690.
• Chelton, D.B. The impact of SST Specification on ECMWF SurfaceWind Stress Fields in the Eastern Trtopical Pacific. J. Clim. 2005, 18, 530–550.
• Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158.
• Kennedy, J.J.; Rayner, N.A.; Smith, R.O.; Saundby, M.; Parker, D.E. Reassessing biases and other uncertainties in sea surface temperatre observations measure in situ since 1850 part 1: Measurement and sampling errors. J. Geohpys. Res. 2011, 116, doi:10.1029/2010JD015218.
• Kennedy, J.J.; Rayner, N.A.; Smith, R.O.; Saundby, M.; Parker, D.E. Reassessing biases and other uncertainties in sea surface temperatre observations measure in situ since 1850 part 2: Biases and homogenisation. J. Geohpys. Res. 2011, 116, doi:10.1029/2010JD015220.
• Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. An improved in situ and satellite SST analysis for climate. J. Geophys. Res. 2003, 108, doi:10.1029/2002JD002670.
• Kent, E.C.; Kennedy, J.J.; Berry, D.I.; Smith, R.O. Effects of instrumentation changes on sea surface temperature measured in situ. WIREs Clim. Chang. 2010, 1, 718–728, doi:10.1002/wcc.55.
• Kaplan, A.; Cane, M.A.; Kushnir, Y.; Clement, A.C.; Blumenthal, M.B.; Rajagopalan, B. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res. 1998, 103, 18567–18589, doi:10.1029/97JC01736.
• Anding, D.; Kauth, R. Estimation of sea surface temperature from space. Remote Sens. Environ. 1970, 1, 272–220, doi:10.1016/S0034-4257(70)80002-5.
• Deschamps, P.Y.; Phulpin, T. Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12 Boundary-Layer Meteorol. 1980, 18, 131–143, doi:10.10007/BF00121320.
McClain, E.P. Global sea surface temperatures and cloud clearing for aerosol optical depth estimates. Int. J. Remote Sens. 1989, 10, 763–769.
• Walton, C.C.; Pichel, W.G.; Sapper F.J.; May, D.A. The development and operational application of nonlinear algorithms for the measurements of sea surfrace temperatures with NOAA polar-orbiting environmental satellites. J. Geophys. Res. 1998, 103, 27999–28012, doi:10.1029/98JC02370.
• Kilpatrick, K.A.; Podestá, G.P.; Evans, R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Gephys. Res. 2001, 106, 9179–9197, doi:10.1029/1999JC000065.
• Merchant, C.J.; Llewellyn-Jones, D.; Saunders, R.W.; Rayner, N.A.; Kent, E.C.; Old, C.P.; Berry, D.; Birks, A.R.; Blackmore, T.; Corlett, G.K.; et al. Deriving a sea surface temperature record suitable for climate change research from the along-track scanning radiometers. Adv. Space Res. 2007, 41, 1–11, doi:10.1016/j.asr.2007.07.041.
• Merchant, C.J.; Embury, O.; Roberts-Jones, J.; Fiedler, E.; Bulgin, C.E.; Corlett, G.K.; Good, S.; McLaren, A.; Rayner, N.; Morak-Bozzo, S.; et al. Sea surface temperature datasets for climate applications from phase 1 of the European Space Agency Climate Change Initiative (SST CCI). Geosci. Data J. 2014, 1, 179–191, doi:10.1002/gdj3.20.
• Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625.
• Wentz, F.J.; Gentemann, C.; Smith D.; Chelton, D. Satellite measurements of sea surface temperature through clouds. Science 2000, 288, 847–850, doi:10.1126/science.288.5467.847.
• Chelton, D.B.;Wentz, F.J. Global Microwave Satellite Observations of Sea Surface Temperature for Numerical Weather prediction and Climate Research. Bull. Am. Meteorol. Soc. 2005, 86, 1097–1115.
• Ecuyer, T.S.; Jiang, J.H. Touring the atmosphere aboard the A-Train. Phys. Today 2010, 63, 36–41, doi:10.1063/1.3463626.
• Prigent, C.; Aires, F.; Bernardo, F.; Orlhac, J.C.; Goutoule, J.M.; Roquet, H.; Donlon, C. Analysis of the potential and limitations of microwave radiometry for the retrieval of sea surface temperature: Definition of MICROWAT, a new mission concept. J. Geophys. Res. Oceans 2013, 118, 3074–3086.
• Cavalieri, D.J. A microwave technique for mapping thin sea ice. J. Geophys. Res. Oceans 1994, 99, 12561–12572, doi:10.1029/94JC00707.
• Eyre, J.R.; Woolf, H.M. Transmission of atmospheric gases in the microwave region: A fast model. Appl. Opt. 1988 27, 3244–3249.
• Hocking, J.; Rayer, P.; Rundle, D.; Saunders, R.; Matricardi, M.; Geer, G.; Brunel, P.; Vidot, J. RTTOV v11 Users Guide; Doc. No. NWPSAF-MO-UD-028; Version 1.4; EUMETSAT: Darmstadt, Germany, 2015.
• Matricardi, M.; Chevallier, F.; Kelly, G.; Thepaut, J.-N. An improved general fast radiative transfer model for the assimilation of radiance observations. Q. J. R. Meteorol. Soc. 2004, 30, 153–173.
• Saunders, R.W.; Matricardi, M.; Brunel, P. An improved fast radiative transfer model for assimilation of satellite radiance observations. Q. J. R. Meteorol. Soc. 1999, 125, 1407–1425, doi:10.1002/qj.1999.49712555615.
• Liu, Q.; Weng, W.; English, S. An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1238–1250.
• Ellison,W.J.; Balana, A.; Delbos, G.; Lamkaouchi, K.; Guillou, C.; Prigent, C. New permittivity measurements of seawater. Radio Sci. 1998, 33, 639–648.
• Ellison, W.J.; English, S.J.; Lamkaouchi, K.; Balana, A.; Obligis, E.; Deblonde, G.; Hewison, T.J.; Bauer, P.; Kelly, G.; Eymard, L. A comparison of ocean emissivity using the Advanced Microwave Sounding Unit, the Special Sensor Microwave Imager, The TRRM Microwave Imager, and airborne radiometer observations.J. Geophys. Res. 2003, 108, doi:10.1029/2002JD003213.
• Guillou, C.; Ellison,W.J.; Eymard, L.; Lamkaouchi, K.; Prigent, C.; Delbos, G.; Balana, A.; Boukabara, S.A. Impact of new permittivity measurements on sea-surface emissivity modelling in microwaves. Radio Sci. 1998, 33, 649–667.
• Klein, L.A.; Swift, C.T. An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag. 1979, 25, 104–111.
• Meissner, T.; Wentz, F.J. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1836–1849.
• Meissner, T.; Wentz, F.J. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3004–3026.
• Stogryn, A. Equations for calculating the dielectric constant of saline water. IEEE Trans. Microw. Theory Tech. 1971, 19, 763–766.
• Liu, Q.; Simmer, C.; Ruprecht, E. Monte Carlo simulations of the microwave emissivity of the sea surface. J. Geophys. Res. 1998, 103, 24983–24989.
• Monahan, E.C.; Spiel, D.E.; Davidson, K.L. A model of marine aerosol formation via whitecaps and wave disruption. In Oceanic Whitecaps and Their Role in Air-Sea Exchange Process; Monahan, E.C., MacNiocaill, G.D., Eds.; D. Reidel: Dordrecht, The Netherlands, 1986; pp. 167–174.
• Tang, C. The effect of droplets in the air-sea transition zone on the sea brightness temperature.J. Phys. Oceanogr. 1974, 4, 579–593.
• Kazumori, M.; Liu, Q.; Treadon, R.; Derber, J.C. Impact study of AMSR-E radiances in the NCEP global data assimilation system. Mon. Weather Rev. 2008, 136, 541–559.
• Stogryn, A. The emissivity of sea foam at microwave frequencies. J. Geophys. Res. 1972, 77, 1658–1666.
• Dicke, R.H.; Peebles, P.J.E.; Roll, P.G.;Wilkinson, D.T. Cosmic black-body radiation. Astrophys. J. 1965, 142, 414–419.
• Penzias, A.A.; Wilson, R.W. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 1965, 142, 419–421.
• Fixsen, D.J. The temperature of the cosmic microwave background. Astrophys. J. 2009, 707, 916–920, doi:10.1088/0004-637X/707/2/916.
• Robinson, I.S. Measuring the Oceans from Space; Springer: Berlin/Heidelberg, Germany, 2004.
• Rodgers, C.D. Inverse Methods for Atmospheric Sounding; World Scientific Publishing: Singapore, 2000.
• Merchant, C.J.; Le Borgne, P.; Marsouin, A.; Roquet, H. Optimal estimation of sea surface temperature from split-window observations. Remote Sens. Environ. 2008, 112, 2469–2484, doi:10.1016/j.rse.2007.11.011.
• Chevallier, F.; Di Michele, S.; McNally, A.P. Diverse Profiles from the ECMWF 91-Level Short-Range Forecasts; Doc. No. NWPSAF-EC-TR-010; Version 1.0; EUMETSAT: Darmstadt, Germany, 2006.
• Japan Aerospace Exploration Agency. GCOM-W1 “Shizuku” Data Users Handbook, 1st ed.; Japan Aerospace Exploration Agency, Earth Observation Research Center: Tsukuba, Japan, 2013.