Non-genomic effects of nuclear receptors: insights from the anucleate plateletUnsworth, A. J., Flora, G. D. and Gibbins, J. M. ORCID: https://orcid.org/0000-0002-0372-5352 (2018) Non-genomic effects of nuclear receptors: insights from the anucleate platelet. Cardiovascular Research, 114 (5). pp. 645-655. ISSN 0008-6363
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1093/cvr/cvy044 Abstract/SummaryNuclear receptors have the ability to elicit two different kinds of responses, genomic and non-genomic. While genomic responses control gene expression by influencing the rate of transcription, non-genomic effects occur rapidly and independently of transcriptional regulation. Due to their anucleate nature and mechanistically well-characterised and rapid responses, platelets provide a model system for the study of any non-genomic effects of the nuclear receptors. Several nuclear receptors have been found to be expressed in human platelets, and multiple nuclear receptor agonists have been shown to elicit anti-platelet effects by a variety of mechanisms. The non-genomic functions of NRs vary, including the regulation of kinase and phosphatase activity, ion channel function, intracellular calcium levels and production of second messengers. Recently, the characterisation of mechanisms and identification of novel binding partners of nuclear receptors have further strengthened the prospects of developing their ligands into potential therapeutics that offer cardio-protective properties in addition to their other defined genomic effects.
DownloadsDownloads per month over past year
• 1. Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor structure: implications for function. Annual review of physiology 2007;69:201-220.
• 2. Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: from physiology to pathology. Journal of Allergy and Clinical Immunology 2013;132:264-286.
• 3. Khan S, Lingrel JB. Thematic Minireview Series on Nuclear Receptors in Biology and Diseases. Journal of Biological Chemistry 2010;285:38741-38742.
• 4. Falkenstein E, Norman AW, Wehling M. Mannheim classification of nongenomically initiated (rapid) steroid action(s). The Journal of clinical endocrinology and metabolism 2000;85:2072-2075.
• 5. Hammes SR, Levin ER. Extranuclear steroid receptors: nature and actions. Endocr Rev 2007;28:726-741.
• 6. Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, Wehling M. Nongenomic steroid action: controversies, questions, and answers. Physiological reviews 2003;83:965-1016.
• 7. Nadal A, Diaz M, Valverde MA. The estrogen trinity: membrane, cytosolic, and nuclear effects. News Physiol Sci 2001;16:251-255.
• 8. Boonyaratanakornkit V, Edwards DP. Receptor mechanisms mediating non-genomic actions of sex steroids. Seminars in reproductive medicine 2007;25:139-153.
• 9. Ordonez-Moran P, Munoz A. Nuclear receptors: genomic and non-genomic effects converge. Cell cycle (Georgetown, Tex) 2009;8:1675-1680.
• 10. McKenna NJ, O'Malley BW. Combinatorial Control of Gene Expression by Nuclear Receptors and Coregulators. Cell;108:465-474.
• 11. Nathan AS, Sen S, Yeh RW. The risk of bleeding with the use of antiplatelet agents for the treatment of cardiovascular disease. Expert Opinion on Drug Safety 2017.
• 12. Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O’Donnell E, Farndale RW, Ware J. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010;327:580-583.
• 13. Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood 2014;123:2759-2767.
• 14. Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood 2014;123:2759-2767.
• 15. Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O'Donnell E, Farndale RW, Ware J, Lee DM. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010;327:580-583.
• 16. Santilli F, Simeone P, Liani R, Davì G. Platelets and diabetes mellitus. Prostaglandins & other lipid mediators 2015;120:28-39.
• 17. Borsig L. The role of platelet activation in tumor metastasis. Expert review of anticancer therapy 2008;8:1247-1255.
• 18. Schubert S, Weyrich AS, Rowley JW. A tour through the transcriptional landscape of platelets. Blood 2014;124:493-502.
• 19. Rowley JW, Schwertz H, Weyrich AS. Platelet mRNA: the meaning behind the message. Current opinion in hematology 2012;19:385.
• 20. Cecchetti L, Tolley ND, Michetti N, Bury L, Weyrich AS, Gresele P. Megakaryocytes differentially sort mRNAs for matrix metalloproteinases and their inhibitors into platelets: a mechanism for regulating synthetic events. Blood 2011;118:1903-1911.
• 21. Risitano A, Beaulieu LM, Vitseva O, Freedman JE. Platelets and platelet-like particles mediate intercellular RNA transfer. Blood 2012;119:6288-6295.
• 22. Bishop-Bailey D. The platelet as a model system for the acute actions of nuclear receptors. Steroids 2010;75:570-575.
• 23. Jones CI, Barrett NE, Moraes LA, Gibbins JM, Jackson DE. Endogenous inhibitory mechanisms and the regulation of platelet function. Methods in molecular biology 2012;788:341-366.
• 24. Khetawat G, Faraday N, Nealen ML, Vijayan KV, Bolton E, Noga SJ, Bray PF. Human megakaryocytes and platelets contain the estrogen receptor beta and androgen receptor (AR): testosterone regulates AR expression. Blood 2000;95:2289-2296.
• 25. Campelo AE, Cutini PH, Massheimer VL. Testosterone modulates platelet aggregation and endothelial cell growth through nitric oxide pathway. J Endocrinol 2012;213:77-87.
• 26. Akarasereenont P, Tripatara P, Chotewuttakorn S, Palo T, Thaworn A. The effects of estrone, estradiol and estriol on platelet aggregation induced by adrenaline and adenosine diphosphate. Platelets 2006;17:441-447.
• 27. Bar J, Tepper R, Fuchs J, Pardo Y, Goldberger S, Ovadia J. The effect of estrogen replacement therapy on platelet aggregation and adenosine triphosphate release in postmenopausal women. Obstet Gynecol 1993;81:261-264.
• 28. Valera MC, Gratacap MP, Gourdy P, Lenfant F, Cabou C, Toutain CE, Marcellin M, Saint Laurent N, Sie P, Sixou M, Arnal JF, Payrastre B. Chronic estradiol treatment reduces platelet responses and protects mice from thromboembolism through the hematopoietic estrogen receptor alpha. Blood 2012;120:1703-1712.
• 29. Moraes LA, Paul-Clark MJ, Rickman A, Flower RJ, Goulding NJ, Perretti M. Ligand-specific glucocorticoid receptor activation in human platelets. Blood 2005;106:4167-4175.
• 30. Liverani E, Banerjee S, Roberts W, Naseem KM, Perretti M. Prednisolone exerts exquisite inhibitory properties on platelet functions. Biochemical pharmacology 2012;83:1364-1373.
• 31. Moraes LA, Unsworth AJ, Vaiyapuri S, Ali MS, Sasikumar P, Sage T, Flora GD, Bye AP, Kriek N, Dorchies E, Molendi-Coste O, Dombrowicz D, Staels B, Bishop-Bailey D, Gibbins JM. Farnesoid X Receptor and Its Ligands Inhibit the Function of Platelets. Arterioscler Thromb Vasc Biol 2016.
• 32. Unsworth AJ, Bye AP, Tannetta DS, Desborough MJR, Kriek N, Sage T, Allan HE, Crescente M, Yaqoob P, Warner TD, Jones CI, Gibbins JM. Farnesoid X Receptor and Liver X Receptor Ligands Initiate Formation of Coated Platelets. Arteriosclerosis, thrombosis, and vascular biology 2017.
• 33. Spyridon M, Moraes LA, Jones CI, Sage T, Sasikumar P, Bucci G, Gibbins JM. LXR as a novel antithrombotic target. Blood 2011;117:5751-5761.
• 34. Akbiyik F, Ray DM, Gettings KF, Blumberg N, Francis CW, Phipps RP. Human bone marrow megakaryocytes and platelets express PPARgamma, and PPARgamma agonists blunt platelet release of CD40 ligand and thromboxanes. Blood 2004;104:1361-1368.
• 35. Ali FY, Armstrong PC, Dhanji AR, Tucker AT, Paul-Clark MJ, Mitchell JA, Warner TD. Antiplatelet actions of statins and fibrates are mediated by PPARs. Arteriosclerosis, thrombosis, and vascular biology 2009;29:706-711.
• 36. Ali FY, Davidson SJ, Moraes LA, Traves SL, Paul-Clark M, Bishop-Bailey D, Warner TD, Mitchell JA. Role of nuclear receptor signaling in platelets: antithrombotic effects of PPARbeta. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2006;20:326-328.
• 37. Ali FY, Hall MG, Desvergne B, Warner TD, Mitchell JA. PPARbeta/delta agonists modulate platelet function via a mechanism involving PPAR receptors and specific association/repression of PKCalpha--brief report. Arteriosclerosis, thrombosis, and vascular biology 2009;29:1871-1873.
• 38. Du H, Hu H, Zheng H, Hao J, Yang J, Cui W. Effects of peroxisome proliferator-activated receptor gamma in simvastatin antiplatelet activity: influences on cAMP and mitogen-activated protein kinases. Thromb Res 2014;134:111-120.
• 39. Li D, Chen K, Sinha N, Zhang X, Wang Y, Sinha AK, Romeo F, Mehta JL. The effects of PPAR-gamma ligand pioglitazone on platelet aggregation and arterial thrombus formation. Cardiovascular research 2005;65:907-912.
• 40. Moraes LA, Spyridon M, Kaiser WJ, Jones CI, Sage T, Atherton RE, Gibbins JM. Non-genomic effects of PPARgamma ligands: inhibition of GPVI-stimulated platelet activation. Journal of thrombosis and haemostasis : JTH 2010;8:577-587.
• 41. Unsworth A, Kriek N, Bye A, Naran K, Sage T, Flora G, Gibbins J. PPARγ agonists negatively regulate αIIbβ3 integrin outside‐in signaling and platelet function through up‐regulation of protein kinase A activity. Journal of Thrombosis and Haemostasis 2017;15:356-369.
• 42. Unsworth AJ, Kriek N, Bye AP, Naran K, Sage T, Flora GD, Gibbins JM. PPARgamma agonists negatively regulate alphaIIbbeta3 integrin outside-in signalling and platelet function through upregulation of protein kinase A activity. Journal of thrombosis and haemostasis : JTH 2016.
• 43. Rondina MT, Freitag M, Pluthero FG, Kahr WH, Rowley JW, Kraiss LW, Franks Z, Zimmerman GA, Weyrich AS, Schwertz H. Non-genomic activities of retinoic acid receptor alpha control actin cytoskeletal events in human platelets. Journal of thrombosis and haemostasis : JTH 2016;14:1082-1094.
• 44. Moraes LA, Swales KE, Wray JA, Damazo A, Gibbins JM, Warner TD, Bishop-Bailey D. Nongenomic signaling of the retinoid X receptor through binding and inhibiting Gq in human platelets. Blood 2007;109:3741-3744.
• 45. Unsworth AJ, Flora GD, Sasikumar P, Bye AP, Sage T, Kriek N, Crescente M, Gibbins JM. RXR Ligands Negatively Regulate Thrombosis and Hemostasis. Arteriosclerosis, thrombosis, and vascular biology 2017;37:812-822.
• 46. Silvagno F, De Vivo E, Attanasio A, Gallo V, Mazzucco G, Pescarmona G. Mitochondrial localization of vitamin D receptor in human platelets and differentiated megakaryocytes. PloS one 2010;5:e8670.
• 47. Cumhur Cure M, Cure E, Yuce S, Yazici T, Karakoyun I, Efe H. Mean platelet volume and vitamin D level. Ann Lab Med 2014;34:98-103.
• 48. Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, Consler TG, Parks DJ, Stewart EL, Willson TM, Lambert MH, Moore JT, Pearce KH, Xu HE. Crystal Structure of the Glucocorticoid Receptor Ligand Binding Domain Reveals a Novel Mode of Receptor Dimerization and Coactivator Recognition. Cell 2002;110:93-105.
• 49. Murphy E. Estrogen signaling and cardiovascular disease. Circulation research 2011;109:687-696.
• 50. Johnson M, Ramey E, Ramwell PW. Sex and age differences in human platelet aggregation. Nature 1975;253:355-357.
• 51. Johnson M, Ramey E, Ramwell P. Androgen-mediated sensitivity in platelet aggregation. American Journal of Physiology-Heart and Circulatory Physiology 1977;232:H381-H385.
• 52. Pilo R, Aharony D, Raz A. Testosterone potentiation of ionophore and ADP induced platelet aggregation: relationship to arachidonic acid metabolism. Thrombosis and haemostasis 1981;46:538-542.
• 53. Ajayi AA, Mathur R, Halushka PV. Testosterone increases human platelet thromboxane A2 receptor density and aggregation responses. Circulation 1995;91:2742-2747.
• 54. Matsuda K, Ruff A, Morinelli TA, Mathur RS, Halushka PV. Testosterone increases thromboxane A2 receptor density and responsiveness in rat aortas and platelets. American Journal of Physiology-Heart and Circulatory Physiology 1994;267:H887-H893.
• 55. Gabbi C, Warner M, Gustafsson J-Å. Action mechanisms of Liver X Receptors. Biochemical and Biophysical Research Communications 2014;446:647-650.
• 56. Wójcicka G, Jamroz-Wiśniewska A, Horoszewicz K, Bełtowski J. Liver X receptors (LXRs). Part I: Structure, function, regulation of activity, and role in lipid metabolism Receptory wątrobowe X (LXR). Część I: Budowa, funkcja, regulacja aktywności i znaczenie w metabolizmie lipidów. Journal cover 2015;69.
• 57. Schaffer S, Tandon R, Zipse H, Siess W, Schmidt A, Jamasbi J, Karshovska E, Steglich W, Lorenz R. Stereo specific platelet inhibition by the natural LXR agonist 22 (R)-OH-cholesterol and its fluorescence labelling with preserved bioactivity and chiral handling in macrophages. Biochemical pharmacology 2013;86:279-285.
• 58. Unsworth AJ, Kriek N, Bye AP, Naran K, Sage T, Flora GD, Gibbins JM. PPARγ agonists negatively regulate αIIbβ3 integrin outside‐in signaling and platelet function through up‐regulation of protein kinase A activity. Journal of Thrombosis and Haemostasis 2017;15:356-369.
• 59. Lee CH, Chawla A, Urbiztondo N, Liao D, Boisvert WA, Evans RM, Curtiss LK. Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science 2003;302:453-457.
• 60. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. Jama 2002;287:2570-2581.
• 61. Chinetti G, Fruchart J-C, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflammation research 2000;49:497-505.
• 62. Moraes LA, Piqueras L, Bishop-Bailey D. Peroxisome proliferator-activated receptors and inflammation. Pharmacology & Therapeutics 2006;110:371-385.
• 63. Sidhu JS, Cowan D, Tooze JA, Kaski J-C. Peroxisome proliferator-activated receptor-γ agonist rosiglitazone reduces circulating platelet activity in patients without diabetes mellitus who have coronary artery disease. American Heart Journal 2004;147:1032-1037.
• 64. Duong V, Rochette-Egly C. The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2011;1812:1023-1031.
• 65. Dolle P. Developmental expression of retinoic acid receptors (RARs). Nuclear receptor signaling 2009;7:e006.
• 66. Schwertz H, Rowley JW, Zimmerman GA, Weyrich AS, Rondina MT. Retinoic acid receptor‐α regulates synthetic events in human platelets. Journal of Thrombosis and Haemostasis 2017;15:2408-2418.
• 67. Evans RM, Mangelsdorf DJ. Nuclear receptors, RXR, and the big bang. Cell 2014;157:255-266.
• 68. Sato Y, Ramalanjaona N, Huet T, Potier N, Osz J, Antony P, Peluso-Iltis C, Poussin-Courmontagne P, Ennifar E, Mély Y, Dejaegere A, Moras D, Rochel N. The “Phantom Effect” of the Rexinoid LG100754: Structural and Functional Insights. PLoS ONE 2010;5:e15119.
• 69. Ahuja H, Szanto A, Nagy L, Davies P. The retinoid X receptor and its ligands: versatile regulators of metabolic function, cell differentiation and cell death. Journal of biological regulators and homeostatic agents 2003;17:29-45.
• 70. Kato S. The function of vitamin D receptor in vitamin D action. Journal of biochemistry 2000;127:717-722.
• 71. Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. European Heart Journal: Acute Cardiovascular Care 2012;1:60-74.
• 72. Hankey GJ, Eikelboom JW. Aspirin resistance. The Lancet 2006;367:606-617.
• 73. Ajjan R, Grant PJ. The role of antiplatelets in hypertension and diabetes mellitus. The Journal of Clinical Hypertension 2011;13:305-313.
• 74. Bye AP, Unsworth AJ, Gibbins JM. Platelet signaling: a complex interplay between inhibitory and activatory networks. Journal of thrombosis and haemostasis : JTH 2016;14:918-930.
• 75. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nature reviews Drug discovery 2006;5:993-996.
• 76. Frye CA, Rhodes ME. The Role and Mechanisms of Steroid Hormones in Approach-Avoidance Behavior. Handbook of Approach and Avoidance Motivation 2008:109-126.
• 77. Richard A, Rohrmann S, Zhang L, Eichholzer M, Basaria S, Selvin E, Dobs AS, Kanarek N, Menke A, Nelson WG, Platz EA. Racial variation in sex steroid hormone concentration in black and white men: a meta-analysis. Andrology 2014;2:428-435.
• 78. Güncü G, Tözüm T, Caglayan F. Effects of endogenous sex hormones on the periodontium—review of literature. Australian dental journal 2005;50:138-145.
• 79. Huang P, Chandra V, Rastinejad F. Structural Overview of the Nuclear Receptor Superfamily: Insights into Physiology and Therapeutics. Annual review of physiology 2010;72:247-272.
• 80. Ng HW, Perkins R, Tong W, Hong H. Versatility or Promiscuity: The Estrogen Receptors, Control of Ligand Selectivity and an Update on Subtype Selective Ligands. International Journal of Environmental Research and Public Health 2014;11:8709-8742.
• 81. Kwon SY, Kim IS, Bae JE, Kang JW, Cho YJ, Cho NS, Lee SW. Pathogen inactivation efficacy of Mirasol PRT System and Intercept Blood System for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma. Vox sanguinis 2014;107:254-260.
• 82. Noy N. Ligand specificity of nuclear hormone receptors: sifting through promiscuity. Biochemistry 2007;46:13461-13467.
• 83. Sepe V, Festa C, Renga B, Carino A, Cipriani S, Finamore C, Masullo D, Del Gaudio F, Monti MC, Fiorucci S. Insights on FXR selective modulation. Speculation on bile acid chemical space in the discovery of potent and selective agonists. Scientific reports 2016;6.
• 84. Krasowski MD, Ni A, Hagey LR, Ekins S. Evolution of promiscuous nuclear hormone receptors: LXR, FXR, VDR, PXR, and CAR. Molecular and cellular endocrinology 2011;334:39-48.
• 85. Xu X, Lu Y, Chen L, Chen J, Luo X, Shen X. Identification of 15d-PGJ2 as an antagonist of farnesoid X receptor: Molecular modeling with biological evaluation. Steroids 2013;78:813-822.
• 86. Hellgren LI. Phytanic acid--an overlooked bioactive fatty acid in dairy fat? Annals of the New York Academy of Sciences 2010;1190:42-49.
• 87. Burris TP, Montrose C, Houck KA, Osborne HE, Bocchinfuso WP, Yaden BC, Cheng CC, Zink RW, Barr RJ, Hepler CD, Krishnan V, Bullock HA, Burris LL, Galvin RJ, Bramlett K, Stayrook KR. The hypolipidemic natural product guggulsterone is a promiscuous steroid receptor ligand. Molecular pharmacology 2005;67:948-954.
• 88. Cesario RM, Klausing K, Razzaghi H, Crombie D, Rungta D, Heyman RA, Lala DS. The rexinoid LG100754 is a novel RXR:PPARgamma agonist and decreases glucose levels in vivo. Molecular endocrinology (Baltimore, Md) 2001;15:1360-1369.
• 89. Zimmerman GA, Weyrich AS. Signal-Dependent Protein Synthesis by Activated Platelets New Pathways to Altered Phenotype and Function. Arteriosclerosis, thrombosis, and vascular biology 2008;28:s17-s24.
• 90. Schulz C, Massberg S. Platelets in atherosclerosis and thrombosis. Handbook of experimental pharmacology 2012:111-133.
• 91. Wang N, Tall AR. Cholesterol in platelet biogenesis and activation. Blood 2016;127:1949-1953.
• 92. Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochemical Society transactions 2005;33:1078-1081.
• 93. Schneider DJ. Factors Contributing to Increased Platelet Reactivity in People With Diabetes. Diabetes Care 2009;32:525-527.
• 94. El Haouari M, Rosado JA. Platelet function in hypertension. Blood cells, molecules & diseases 2009;42:38-43.
• 95. Calkin A, Tontonoz P. LXR signaling pathways and atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology 2010;30:10.1161/ATVBAHA.1109.191197.
• 96. Mencarelli A, Fiorucci S. FXR an emerging therapeutic target for the treatment of atherosclerosis. Journal of cellular and molecular medicine 2010;14:79-92.
• 97. Spinelli S, O'brien J, Bancos S, Lehmann G, Springer D, Blumberg N, Francis C, Taubman M, Phipps R. The PPAR-platelet connection: modulators of inflammation and potential cardiovascular effects. PPAR research 2007;2008.
• 98. Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM. Selective glucocorticoid receptor modulation: New directions with non-steroidal scaffolds. Pharmacology & therapeutics 2015;152:28-41.
• 99. Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in health and disease. Trends in pharmacological sciences 2013;34:518-530.
• 100. Muchmore DB. Raloxifene: a selective estrogen receptor modulator (SERM) with multiple target system effects. The Oncologist 2000;5:388-392.
• 101. Y Maximov P, M Lee T, Craig Jordan V. The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice. Current clinical pharmacology 2013;8:135-155.
• 102. Filippatos T, Milionis HJ. Treatment of hyperlipidaemia with fenofibrate and related fibrates. Expert opinion on investigational drugs 2008;17:1599-1614.
• 103. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature 2000;405:421-424.
• 104. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM. PPAR [gamma] signaling and metabolism: the good, the bad and the future. Nature medicine 2013;99:557-566.
• 105. Layton A. The use of isotretinoin in acne. Dermato-endocrinology 2009;1:162-169.
• 106. Walmsley S, Northfelt DW, Melosky B, Conant M, Friedman-Kien AE, Wagner B, Group PGNAS. Treatment of AIDS-related cutaneous Kaposi's sarcoma with topical alitretinoin (9-cis-retinoic acid) gel. JAIDS Journal of Acquired Immune Deficiency Syndromes 1999;22:235-246.
• 107. Ghasri P, Scheinfeld N. Update on the use of alitretinoin in treating chronic hand eczema. Clin Cosmet Invest Dermatol 2010;3:59-65.
• 108. Njar VCO. Retinoids in Clinical Use. Nuclear Receptors as Drug Targets: Wiley-VCH Verlag GmbH & Co. KGaA, 2008:389-407.
• 109. Wu‐Wong J. Potential for vitamin D receptor agonists in the treatment of cardiovascular disease. British journal of pharmacology 2009;158:395-412.
• 110. Makishima M, Yamada S. Targeting the vitamin D receptor: advances in drug discovery. Expert Opinion on Therapeutic Patents 2005;15:1133-1145. University Staff: Request a correction | Centaur Editors: Update this record |