Agusti-Panareda, A., and A. C. M. Beljaars, 2008: ECMFW’s Contribution to AMMA. Tech. Rep. 115, 19–27 pp. ** Arnold, N. P., and D. A. Randall, 2015: Global-scale convective aggregation: Implications for the Madden-Julian Oscillation. J. Adv. Model. Earth Syst., 7, 1499–1518, doi:10.1002/2015MS000498. ** Bechtold, P., M. Kohler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Q. J. R. Meteorol. Soc., 134, 1337–1351, doi:10.1002/qj. ** Blackburn, M., and B. J. Hoskins, 2013: Context and Aims of the Aqua-Planet Experiment. J. Meteorol. Soc. Japan, 91A, 1–15, doi:10.2151/jmsj.2013-A01. ** Bush, S. J., A. G. Turner, S. J. Woolnough, G. M. Martin, and N. P. Klingaman, 2015: The effect of increased convective entrainment on Asian monsoon biases in the MetUM general circulation model. Q. J. R. Meteorol. Soc., 141 (686), 311–326, doi:10.1002/qj.2371. ** Cornforth, R. J., 2013: West African Monsoon 2012. Weather, 68 (10), 256–263, doi:10.1002/wea.2161. ** Crum, F. X., and T. J. Dunkerton, 1992: Analytic and Numerical Models of Wave-CISK with Conditional Heating. J. Atmos. Sci., 49 (18), 1693–1708. ** Dunkerton, T. J., and F. X. Crum, 1991: Scale Selection and Propagation of Wave-CISK with Conditional Heating. J. Meteorol. Soc. Japan, 69 (4), 449–458. ** Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc., 106 (449), 447–462, doi:10.1002/qj.49710644905. ** Gonzalez, A. O., and X. Jiang, 2017: Winter mean lower tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden-Julian oscillation. Geophys. Res. Lett., 44 (5), 2588–2596, doi:10.1002/2016GL072430. ** Grant, A. L. M., and A. R. Brown, 1999: A similarity hypothesis for shallow-cumulus transports. Q. J. R. Meteorol. Soc., 125, 1913–1936, doi:10.1002/qj.49712555802. ** Gregory, D., and P. R. Rowntree, 1990: A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure. Mon. Weather Rev., 118 (7), 1483–1506, doi:10.1175/1520-0493(1990)118h1483:AMFCSWi2.0.CO;2. ** Haertel, P. T., K. H. Straub, and A. Budsock, 2015: Transforming circumnavigating Kelvin waves that initiate and dissipate the Madden-Julian Oscillation. Q. J. R. Meteorol. Soc., 141 (690), 1586–1602, doi:10.1002/qj.2461. ** Hall, N. M. J., G. N. Kiladis, and C. D. Thorncroft, 2006: Three-Dimensional Structure and Dynamics of African Easterly Waves. Part II: Dynamical Modes. J. Atmos. Sci., 63, 2231–2245, doi:10.1175/JAS3742.1. ** Hayashi, Y., 1970: Theory of Large-Scale Equatorial Waves Generated by Condensation Heat and Accelerating the Zonal Wind. J. Meteorol. Soc. Japan, 48 (2), 140–160. ** Hirons, L. C., P. M. Inness, F. Vitart, and P. Bechtold, 2013a: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part I: The representation of the MJO. Q. J. R. Meteorol. Soc., 139 (675), 1417–1426, doi:10.1002/qj.2060. ** Hirons, L. C., P. M. Inness, F. Vitart, and P. Bechtold, 2013b: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: The application of process-based diagnostics. Q. J. R. Meteorol. Soc., 139 (675), 1427–1444, doi:10.1002/qj.2059. ** Hirota, N., Y. N. Takayabu, M. Watanabe, M. Kimoto, and M. Chikira, 2014: Role of convective entrainment in spatial distributions of and temporal variations in precipitation over tropical oceans. J. Clim., 27 (23), 8707–8723, doi:10.1175/JCLI-D-13-00701.1. ** Holton, J. R., 2004: An Introduction to Dynamical Meteorology. 4th ed., Elsevier, 535 pp. ** James, I. N., 1995: Introduction to Circulating Atmospheres. 1st ed., Cambridge University Press, 422 pp. ** Janicot, S., F. Mounier, and A. Diedhiou, 2008: Les ondes atmospheriques d’echelle synoptique dans la mousson d’Afrique de l’Ouest et centrale: ondes d’est et ondes de Kelvin. Secheresse, 19 (1), 13–22, doi:10.1684/sec.2008.0115. ** Kang, I.-S., F. Liu, M.-S. Ahn, Y.-M. Yang, and B. Wang, 2013: The Role of SST Structure in Convectively Coupled Kelvin-Rossby Waves and Its Implications for MJO Formation. J. Clim., 26, 5915–5930, doi:10.1175/JCLI-D-12-00303.1. ** Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-Dimensional Structure and Dynamics of African Easterly Waves. Part I: Observations. J. Atmos. Sci., 63, 2212–2230, doi:10.1175/JAS3741.1. ** Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively Coupled Equatorial Waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266. ** Kim, D., and Coauthors, 2014: Process-Oriented MJO Simulation Diagnostic: Moisture Sensitivity of Simulated Convection. J. Clim., 27, 5379–5395, doi:10.1175/JCLI-D-13-00497.1. ** Klingaman, N. P., and S. J. Woolnough, 2014: Using a case-study approach to improve the Madden-Julian oscillation in the Hadley Centre model. Q. J. R. Meteorol. Soc., 140 (685), 2491–2505, doi:10.1002/qj.2314. ** Lau, K.-M., and L. Peng, 1987: Origin of Low-Frequency (Intraseasonal) Oscillation in the Tropical Atmosphere. Part I: Basic Theory. J. Atmos. Sci., 44 (6), 950–972, doi:10.1175/1520-0469(1987)044h0950:OOLFOIi2.0.CO;2. ** Lee, M.-I., I.-S. Kang, and B. E. Mapes, 2003: Impacts of Cumulus Convection Parameterization on Aqua-planet AGCM Simulations of Tropical Intraseasonal Variability. J. Meteorol. Soc. Japan, 81 (5), 963–992, doi:10.2151/jmsj.81.963. ** Lin, J.-L., and Coauthors, 2006: Tropical Intraseasonal Variability in 14 IPCC AR4 Climate Models. Part I: Convective Signals. J. Clim., 19 (12), 2665–2690, doi:10.1175/JCLI3735.1. ** Lindzen, R. S., 1974: Wave-CISK in the Tropics. J. Atmos. Sci., 31, 156–179, doi:10.1175/1520-0469(1974)031h0156:WCITTi2.0.CO;2. ** Liu, Y., L. Guo, G. Wu, and Z. Wang, 2010: Sensitivity of ITCZ configuration to cumulus convective parameterizations on an aqua planet. Clim. Dyn., 34 (2), 223–240, doi:10.1007/s00382-009-0652-2. ** Matsuno, T., 1966: Quasi-Geostrophic Motions in the Equatorial Area. J. Meteorol. Soc. Japan, 44 (1), 25–43. ** Matthews, A. J., 2000: Propagation Mechanisms for the Madden-Julian Oscillation. Q. J. R. Meteorol. Soc., 126 (569), 2637–2651, doi:10.1002/qj.49712656902. ** Matthews, A. J., and J. Lander, 1999: Physical and Numerical Contributions to the Structure of Kelvin Wave-CISK Modes in a Spectral Transform Model. J. Atmos. Sci., 56, 4050–4058. ** Mekonnen, A., C. D. Thorncroft, A. Aiyyer, and G. N. Kiladis, 2008: Convectively Coupled Kelvin Waves over Tropical Africa during the Boreal Summer: Structure and Variability. J. Clim., 21 (24), 6649–6667, doi:10.1175/2008JCLI2008.1. ** Mobis, B., and B. Stevens, 2012: Factors controlling the position of the Intertropical Convergence Zone on an aquaplanet. J. Adv. Model. Earth Syst., 4, M00A04, doi:10.1029/2012MS000199. ** Mounier, F., G. N. Kiladis, and S. Janicot, 2007: Analysis of the Dominant Mode of Convectively Coupled Kelvin Waves in the West African Monsoon. J. Clim., 20 (8), 1487–1503, doi:10.1175/JCLI4059.1. ** Oueslati, B., and G. Bellon, 2013: Convective Entrainment and Large-Scale Organization of Tropical Precipitation: Sensitivity of the CNRM-CM5 Hierarchy of Models. J. Clim., 26 (9), 2931–2946, doi:10.1175/JCLI-D-12-00314.1. ** Rajendran, K., A. Kitoh, and J. Srinivasan, 2013: Effect of SST Variation on ITCZ in APE Simulations. J. Meteorol. Soc. Japan, 91A, 195–215, doi:10.2151/jmsj.2013-A06. ** Schreck, C. J., and J. Molinari, 2011: Tropical Cyclogenesis Associated with Kelvin Waves and the Madden-Julian Oscillation. Mon. Weather Rev., 139 (9), 2723–2734, doi:10.1175/MWR-D-10-05060.1. ** Sobel, A., S. Wang, and D. Kim, 2014: Moist Static Energy Budget of the MJO during DYNAMO. J. Atmos. Sci., 71 (11), 4276–4291, doi:10.1175/JAS-D-14-0052.1. ** Straub, K. H., and G. N. Kiladis, 2002: Observations of a Convectively Coupled Kelvin Wave in the Eastern Pacific ITCZ. J. Atmos. Sci., 59 (1), 30–53, doi:10.1175/1520-0469(2002)059h0030:OOACCKi2.0.CO;2. ** Talib, J., S. J. Woolnough, N. P. Klingaman, and C. E. Holloway, 2018: The role of the cloud radiative effect in the sensitivity of the Intertropical Convergence Zone to convective mixing. J. Clim., doi:10.1175/JCLI-D-17-0794.1. ** Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The Equatorial 30-60 day Oscillation and the Arakawa-Schubert Penetrative Cumulus Parameterization. J. Meteorol. Soc. Japan, 66 (6), 883–901. ** Ventrice, M. J., and C. D. Thorncroft, 2013: The role of convectively coupled atmospheric Kelvin waves on African easterly wave activity. Mon. Weather Rev., 141 (6), 1910–1924, doi:10.1175/MWR-D-12-00147.1. ** Vitart, F., S. J. Woolnough, M. A. Balmaseda, and A. M. Tompkins, 2007: Monthly Forecast of the Madden-Julian Oscillation Using a Coupled GCM. Mon. Weather Rev., 135 (7), 2700–2715, doi:10.1175/MWR3415.1. ** Walters, D. N., and Coauthors, 2011: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919–941, doi:10.5194/gmd-7-361-2014. ** Wang, B., 1988: Dynamics of Tropical Low-Frequency Waves: An Analysis of the Moist Kelvin Wave. J. Atmos. Sci., 45 (14), 2051–2065. ** Wang, L., T. Li, E. D. Maloney, and B. Wang, 2017: Fundamental causes of propagating and nonpropagating MJOs in MJOTF/GASS models. J. Clim., 30 (10), 3743–3769, doi:10.1175/JCLI-D-16-0765.1. ** Wheeler, M. C., and H. H. Hendon, 2004: An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Mon. Weather Rev., 132, 1917–1932. ** Wheeler, M. C., and G. N. Kiladis, 1999: Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber-Frequency Domain. J. Atmos. Sci., 56 (3), 374–399, doi:10.1175/1520-0469(1999)056h0374:CCEWAOi2.0.CO;2. ** Yang, G.-Y., B. J. Hoskins, and J. M. Slingo, 2003: Convectively Coupled Equatorial Waves: A New Methodology for Identifying Wave Structures in Observational Data. J. Atmos. Sci., 60 (14), 1637–1654, doi:10.1175/1520-0469(2003)060h1637:CCEWANi2.0.CO;2. ** Yang, G.-Y., B. J. Hoskins, and J. M. Slingo, 2007a: Convectively Coupled Equatorial Waves. Part I: Horizontal and Vertical Structures. J. Atmos. Sci., 64 (10), 3406–3423, doi:10.1175/JAS4017.1. ** Yang, G.-Y., B. J. Hoskins, and J. M. Slingo, 2007b: Convectively Coupled Equatorial Waves. Part III: Synthesis Structures and Their Forcing and Evolution. J. Atmos. Sci., 64 (10), 3438–3451, doi:10.1175/JAS4019.1. ** Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.