Accessibility navigation

The low-resolution version of HadGEM3 GC3.1: development and evaluation for global climate

Kuhlbrodt, T. ORCID:, Jones, C. G., Sellar, A., Storkey, D., Blockley, E., Stringer, M., Hill, R., Graham, T., Ridley, J., Blaker, A., Calvert, D., Copsey, D., Ellis, R., Hewitt, H., Hyder, P., Ineson, S., Mulcahy, J., Siahaan, A. and Walton, J. (2018) The low-resolution version of HadGEM3 GC3.1: development and evaluation for global climate. Journal of Advances in Modeling Earth Systems, 10 (11). pp. 2865-2888. ISSN 1942-2466

Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

[img] Text - Accepted Version
· Restricted to Repository staff only


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1029/2018MS001370


A new climate model, HadGEM3 N96ORCA1, is presented that is part of the GC3.1 configuration of HadGEM3. N96ORCA1 has a horizontal resolution of ~135 km in the atmosphere and 1° in the ocean and requires an order of magnitude less computing power than its medium-resolution counterpart, N216ORCA025, while retaining a high degree of performance traceability. Scientific performance is compared both to observations and the N216ORCA025 model. N96ORCA1 reproduces observed climate mean and variability almost as well as N216ORCA025. Patterns of biases are similar across the two models. In the north-west Atlantic, N96ORCA1 shows a cold surface bias of up to 6K, typical of ocean models of this resolution. The strength of the Atlantic meridional overturning circulation (16 to 17 Sv) matches observations. In the Southern Ocean, a warm surface bias (up to 2K) is smaller than in N216ORCA025 and linked to improved ocean circulation. Model El Niño/Southern Oscillation and Atlantic Multidecadal Variability are close to observations. Both the cold bias in the Northern hemisphere (N96ORCA1) and the warm bias in the Southern hemisphere (N216ORCA025) develop in the first few decades of the simulations. As in many comparable climate models, simulated interhemispheric gradients of top-of-atmosphere radiation are larger than observations suggest, with contributions from both hemispheres. HadGEM3 GC3.1 N96ORCA1 constitutes the physical core of the UK Earth System Model (UKESM1) and will be used extensively in the Coupled Model Intercomparison Project 6 (CMIP6), both as part of UKESM1 and as a stand-alone coupled climate model.

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:78772
Publisher:American Geophysical Union


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation