Accessibility navigation


Predicted chance that global warming will temporarily exceed 1.5 °C

Smith, D. M., Scaife, A. A., Hawkins, E. ORCID: https://orcid.org/0000-0001-9477-3677, Bilbao, R., Boer, G. J., Caian, M., Caron, L.-P., Danabasoglu, G., Delworth, T., Doblas-Reyes, F. J., Doescher, R., Dunstone, N. J., Eade, R., Hermanson, L., Ishii, M., Kharin, V., Kimoto, M., Koenigk, T., Kushnir, Y., Matei, D. , Meehl, G. A., Menegoz, M., Merryfield, W. J., Mochizuki, T., Müller, W. A., Pohlmann, H., Power, S., Rixen, M., Sospedra-Alfonso, R., Tuma, M., Wyser, K., Yang, X. and Yeager, S. (2018) Predicted chance that global warming will temporarily exceed 1.5 °C. Geophysical Research Letters, 45 (21). pp. 11895-11903. ISSN 0094-8276

[img]
Preview
Text (Open access) - Published Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.

2MB
[img] Text - Accepted Version
· Restricted to Repository staff only

1MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1029/2018GL079362

Abstract/Summary

The Paris Agreement calls for efforts to limit anthropogenic global warming to less than 1.5 °C above preindustrial levels. However, natural internal variability may exacerbate anthropogenic warming to produce temporary excursions above 1.5 °C. Such excursions would not necessarily exceed the Paris Agreement, but would provide a warning that the threshold is being approached. Here we develop a new capability to predict the probability that global temperature will exceed 1.5 °C above preindustrial levels in the coming 5 years. For the period 2017 to 2021 we predict a 38% and 10% chance, respectively, of monthly or yearly temperatures exceeding 1.5 °C, with virtually no chance of the 5‐year mean being above the threshold. Our forecasts will be updated annually to provide policy makers with advanced warning of the evolving probability and duration of future warming events.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:80380
Publisher:American Geophysical Union

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation