Shared striatal activity in decisions to satisfy curiosity and hunger at the risk of electric shocksLau, J. K. L., Ozono, H., Kuratomi, K., Komiya, A. and Murayama, K. (2020) Shared striatal activity in decisions to satisfy curiosity and hunger at the risk of electric shocks. Nature Human Behaviour, 4 (5). pp. 531-543. ISSN 2397-3374
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1038/s41562-020-0848-3 Abstract/SummaryCuriosity is often portrayed as a desirable feature of human faculty. However, curiosity may come at a cost that sometimes puts people in a harmful situation. Here, with a set of behavioural and neuroimaging experiments using stimuli that strongly trigger curiosity (e.g., magic tricks), we examined the psychological and neural mechanisms underlying the motivational effect of curiosity. We consistently demonstrated that across different samples, people were indeed willing to gamble, subjecting themselves to physical risks (i.e. electric shocks) in order to satisfy their curiosity for trivial knowledge that carries no apparent instrumental value. Also, this influence of curiosity shares common neural mechanisms with that of extrinsic incentives (i.e. hunger for food). In particular, we showed that acceptance (compared to rejection) of curiosity/incentive-driven gambles was accompanied by enhanced activity in the ventral striatum (when curiosity was elicited), which extended into the dorsal striatum (when participants made a decision).
DownloadsDownloads per month over past year
• 1. Gottlieb, J., Oudeyer, P.-Y., Lopes, M. & Baranes, A. Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends Cogn. Sci. 17, 585–593 (2013).
• 2. Jirout, J. & Klahr, D. Children’s scientific curiosity: In search of an operational definition of an elusive concept. Dev. Rev. 32, 125–160 (2012).
• 3. Kidd, C. & Hayden, B. Y. The psychology and neuroscience of curiosity. Neuron 88, 449–460 (2015).
• 4. von Stumm, S., Hell, B. & Chamorro-Premuzic, T. The hungry mind: Intellectual curiosity is the third pillar of academic performance. Perspect. Psychol. Sci. 6, 574–588 (2011).
• 5. Gruber, M. J., Gelman, B. D. & Ranganath, C. States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron 84, 486–496 (2014).
• 6. Kang, M. J. et al. The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychol. Sci. 20, 963–973 (2009).
• 7. Renninger, K. A. & Hidi, S. The power of interest for motivation and engagement. (Routledge, NY, 2016).
• 8. Sakaki, M., Yagi, A. & Murayama, K. Curiosity in old age: A possible key to achieving adaptive aging. Neurosci. Biobehav. Rev. 88, 106–116 (2018).
• 9. Rozek, C. S., Svoboda, R. C., Harackiewicz, J. M., Hulleman, C. S. & Hyde, J. S. Utility-value intervention with parents increases students’ STEM preparation and career pursuit. Proc. Natl. Acad. Sci. 114, 909–914 (2017).
• 10. Loewenstein, G. The psychology of curiosity: A review and reinterpretation. Psychol. Bull. 116, 75–98 (1994).
• 11. Berlyne, D. E. Conflict, arousal, and curiosity. (McGraw-Hill Book Company, 1960). doi:10.1037/11164-000
• 12. Silvia, P. J. Exploring the Psychology of Interest. (Oxford University Press, 2006). doi:10.1093/acprof:oso/9780195158557.001.0001
• 13. Marvin, C. B. & Shohamy, D. Curiosity and reward: Valence predicts choice and information prediction errors enhance learning. J. Exp. Psychol. Gen. 145, 266–272 (2016).
• 14. Gottlieb, J. & Oudeyer, P.-Y. Towards a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19, 758–770 (2018).
• 15. Murayama, K. A reward-learning framework of autonomous knowledge acquisition: An integrated account of curiosity, interest, and intrinsic-extrinsic rewards. Preprint at OSF doi:10.31219/osf.io/zey4k (2019).
• 16. Gruber, M. J. & Ranganath, C. How Curiosity Enhances Hippocampus-Dependent Memory: The Prediction, Appraisal, Curiosity, and Exploration (PACE) Framework. Trends Cogn. Sci. 23, 1014–1025 (2019).
• 17. Kobayashi, K., Ravaioli, S., Baranès, A., Woodford, M. & Gottlieb, J. Diverse motives for human curiosity. Nat. Hum. Behav. 3, 587–595 (2019).
• 18. Blanchard, T. C., Hayden, B. Y. & Bromberg-Martin, E. S. Orbitofrontal cortex uses distinct codes for different choice attributes in decisions motivated by curiosity. Neuron 85, 602–614 (2015).
• 19. Daddaoua, N., Lopes, M. & Gottlieb, J. Intrinsically motivated oculomotor exploration guided by uncertainty reduction and conditioned reinforcement in non-human primates. Sci. Rep. 6, 20202 (2016).
• 20. Vasconcelos, M., Monteiro, T. & Kacelnik, A. Irrational choice and the value of information. Sci. Rep. 5, 13874 (2015).
• 21. Bennett, D., Bode, S., Brydevall, M., Warren, H. & Murawski, C. Intrinsic valuation of information in decision making under uncertainty. PLOS Comput. Biol. 12, e1005020 (2016).
• 22. Brydevall, M., Bennett, D., Murawski, C. & Bode, S. The neural encoding of information prediction errors during non-instrumental information seeking. Sci. Rep. 8, 6134 (2018).
• 23. Eliaz, K. & Schotter, A. Paying for confidence: An experimental study of the demand for non-instrumental information. Games Econ. Behav. 70, 304–324 (2010).
• 24. Berridge, K. C. Motivation concepts in behavioral neuroscience. Physiol. Behav. 81, 179–209 (2004).
• 25. Anselme, P. & Robinson, M. J. F. Incentive Motivation: The Missing Piece between Learning and Behavior. in The Cambridge Handbook of Motivation and Learning (eds. Renninger, K. A. & Hidi, S.) 163–182 (Cambridge University Press, 2019). doi:10.1017/9781316823279.009
• 26. Berridge, K. C. From prediction error to incentive salience: mesolimbic computation of reward motivation. Eur. J. Neurosci. 35, 1124–1143 (2012).
• 27. Robinson, T. E. & Berridge, K. C. The incentive sensitization theory of addiction: some current issues. Philos. Trans. R. Soc. B Biol. Sci. 363, 3137–3146 (2008).
• 28. Kringelbach, M. L. & Berridge, K. C. Neuroscience of Reward, Motivation, and Drive. in Recent Developments in Neuroscience Research on Human Motivation (eds. Kim, S., Reeve, J. & Bong, M.) 23–35 (Emerald Group Publishing Limited, Bingley, 2016). doi:10.1108/S0749-742320160000019020
• 29. Berridge, K. C. ‘Liking’ and ‘wanting’ food rewards: Brain substrates and roles in eating disorders. Physiol. Behav. 97, 537–550 (2009).
• 30. Tang, D. W., Fellows, L. K., Small, D. M. & Dagher, A. Food and drug cues activate similar brain regions: A meta-analysis of functional MRI studies. Physiol. Behav. 106, 317–324 (2012).
• 31. O’Doherty, J. P., Deichmann, R., Critchley, H. D. & Dolan, R. J. Neural Responses during Anticipation of a Primary Taste Reward. Neuron 33, 815–826 (2002).
• 32. Knutson, B., Adams, C. M., Fong, G. W. & Hommer, D. Anticipation of Increasing Monetary Reward Selectively Recruits Nucleus Accumbens. J. Neurosci. 21, RC159–RC159 (2001).
• 33. Lawrence, N. S., Hinton, E. C., Parkinson, J. A. & Lawrence, A. D. Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. Neuroimage 63, 415–422 (2012).
• 34. Litman, J. Curiosity and the pleasures of learning: Wanting and liking new information. Cogn. Emot. 19, 793–814 (2005).
• 35. Oosterwijk, S., Snoek, L., Tekoppele, J., Engelbert, L. & Scholte, H. S. Choosing to view morbid information involves reward circuitry. Preprint at bioRxiv doi:10.1101/795120 (2019).
• 36. Kobayashi, K. & Hsu, M. Common neural code for reward and information value. Proc. Natl. Acad. Sci. 116, 13061–13066 (2019).
• 37. Gerdeman, G. L., Partridge, J. G., Lupica, C. R. & Lovinger, D. M. It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci. 26, 184–192 (2003).
• 38. Telzer, E. H. Dopaminergic reward sensitivity can promote adolescent health: A new perspective on the mechanism of ventral striatum activation. Dev. Cogn. Neurosci. 17, 57–67 (2016).
• 39. Wright, W. F. & Bower, G. H. Mood effects on subjective probability assessment. Organ. Behav. Hum. Decis. Process. 52, 276–291 (1992).
• 40. van Doorn, J. et al. The JASP Guidelines for Conducting and Reporting a Bayesian Analysis. Preprint at PsyArxiv doi:10.31234/osf.io/yqxfr (2019).
• 41. Moss, S. A., Irons, M. & Boland, M. The magic of magic: The effect of magic tricks on subsequent engagement with lecture material. Br. J. Educ. Psychol. 87, 32–42 (2017).
• 42. Ligneul, R., Mermillod, M. & Morisseau, T. From relief to surprise: Dual control of epistemic curiosity in the human brain. Neuroimage 181, 490–500 (2018).
• 43. Baranes, A., Oudeyer, P.-Y. & Gottlieb, J. Eye movements reveal epistemic curiosity in human observers. Vision Res. 117, 81–90 (2015).
• 44. Westfall, J., Nichols, T. E. & Yarkoni, T. Fixing the stimulus-as-fixed-effect fallacy in task fMRI. Wellcome Open Res. 1, 23 (2016).
• 45. Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B. & Gabrieli, J. D. E. Reward-Motivated Learning: Mesolimbic Activation Precedes Memory Formation. Neuron 50, 507–517 (2006).
• 46. Shenhav, A., Cohen, J. D. & Botvinick, M. M. Dorsal anterior cingulate cortex and the value of control. Nat. Neurosci. 19, 1286–1291 (2016).
• 47. Kolling, N. et al. Value, search, persistence and model updating in anterior cingulate cortex. Nat. Neurosci. 19, 1280–1285 (2016).
• 48. Pochon, J.-B., Riis, J., Sanfey, A. G., Nystrom, L. E. & Cohen, J. D. Functional Imaging of Decision Conflict. J. Neurosci. 28, 3468–3473 (2008).
• 49. Botvinick, M. M., Cohen, J. D. & Carter, C. S. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539–546 (2004).
• 50. Niv, Y. Reinforcement learning in the brain. J. Math. Psychol. 53, 139–154 (2009).
• 51. O’Doherty, J. Dissociable Roles of Ventral and Dorsal Striatum in Instrumental Conditioning. Science 304, 452–454 (2004).
• 52. Marche, K., Martel, A.-C. & Apicella, P. Differences between Dorsal and Ventral Striatum in the Sensitivity of Tonically Active Neurons to Rewarding Events. Front. Syst. Neurosci. 11, (2017).
• 53. Morrison, I., Tipper, S. P., Fenton-Adams, W. L. & Bach, P. “Feeling” others’ painful actions: The sensorimotor integration of pain and action information. Hum. Brain Mapp. 34, 1982–1998 (2013).
• 54. Guo, X. et al. Empathic neural responses to others’ pain depend on monetary reward. Soc. Cogn. Affect. Neurosci. 7, 535–541 (2012).
• 55. Whitmarsh, S., Nieuwenhuis, I. L. C., Barendregt, H. P. & Jensen, O. Sensorimotor alpha activity is modulated in response to the observation of pain in others. Front. Hum. Neurosci. 5, (2011).
• 56. Jepma, M., Verdonschot, R. G., van Steenbergen, H., Rombouts, S. A. R. B. & Nieuwenhuis, S. Neural mechanisms underlying the induction and relief of perceptual curiosity. Front. Behav. Neurosci. 6, (2012).
• 57. Kruger, J. & Evans, M. The paradox of Alypius and the pursuit of unwanted information. J. Exp. Soc. Psychol. 45, 1173–1179 (2009).
• 58. Bromberg-Martin, E. S. & Hikosaka, O. Midbrain Dopamine Neurons Signal Preference for Advance Information about Upcoming Rewards. Neuron 63, 119–126 (2009).
• 59. Rodriguez Cabrero, J. A. M., Zhu, J.-Q. & Ludvig, E. A. Costly curiosity: People pay a price to resolve an uncertain gamble early. Behav. Processes 160, 20–25 (2019).
• 60. Oosterwijk, S. Choosing the negative: A behavioral demonstration of morbid curiosity. PLoS One 12, e0178399 (2017).
• 61. Hsee, C. K. & Ruan, B. The Pandora effect: The power and peril of curiosity. Psychol. Sci. 27, 659–666 (2016).
• 62. Noordewier, M. K. & van Dijk, E. Curiosity and time: from not knowing to almost knowing. Cogn. Emot. 31, 411–421 (2017).
• 63. Dickinson, A. & Balleine, B. The Role of Learning in the Operation of Motivational Systems. in Stevens’ Handbook of Experimental Psychology (eds. Pashler, H. & Gallistel, R.) (John Wiley & Sons, Inc., 2002). doi:10.1002/0471214426.pas0312
• 64. Litman, J., Hutchins, T. & Russon, R. Epistemic curiosity, feeling-of-knowing, and exploratory behaviour. Cogn. Emot. 19, 559–582 (2005).
• 65. Schonberg, T. et al. Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson’s disease patients: evidence from a model-based fMRI study. Neuroimage 49, 772–781 (2010).
• 66. Takahashi, Y., Schoenbaum, G. & Niv, A. Silencing the critics: understanding the effects of cocaine sensitization on dorsolateral and ventral striatum in the context of an actor/critic model. Front. Neurosci. 2, 86–99 (2008).
• 67. van Lieshout, L. L. F., Vandenbroucke, A. R. E., Müller, N. C. J., Cools, R. & de Lange, F. P. Induction and Relief of Curiosity Elicit Parietal and Frontal Activity. J. Neurosci. 38, 2579–2588 (2018).
• 68. Di Domenico, S. I. & Ryan, R. M. The Emerging Neuroscience of Intrinsic Motivation: A New Frontier in Self-Determination Research. Front. Hum. Neurosci. 11, (2017).
• 69. Preuschoff, K., Quartz, S. R. & Bossaerts, P. Human Insula Activation Reflects Risk Prediction Errors As Well As Risk. J. Neurosci. 28, 2745–2752 (2008).
• 70. Alexander, W. H. & Brown, J. W. The Role of the Anterior Cingulate Cortex in Prediction Error and Signaling Surprise. Top. Cogn. Sci. 11, 119–135 (2019).
• 71. Silvia, P. J. What Is Interesting? Exploring the Appraisal Structure of Interest. Emotion 5, 89–102 (2005).
• 72. Silvia, P. J. Appraisal components and emotion traits: Examining the appraisal basis of trait curiosity. Cogn. Emot. 22, 94–113 (2008).
• 73. Noordewier, M. K. & van Dijk, E. Interest in Complex Novelty. Basic Appl. Soc. Psych. 38, 98–110 (2016).
• 74. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).
• 75. Shenhav, A., Botvinick, M. M. & Cohen, J. D. The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function. Neuron 79, 217–240 (2013).
• 76. Murayama, K., FitzGibbon, L. & Sakaki, M. Process Account of Curiosity and Interest: A Reward-Learning Perspective. Educ. Psychol. Rev. 31, 875–895 (2019).
• 77. Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C. & Berns, G. S. Human Striatal Responses to Monetary Reward Depend On Saliency. Neuron 42, 509–517 (2004).
• 78. Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W. & Woldorff, M. G. The Involvement of the Dopaminergic Midbrain and Cortico-Striatal-Thalamic Circuits in the Integration of Reward Prospect and Attentional Task Demands. Cereb. Cortex 22, 607–615 (2012).
• 79. Ozono, H. et al. Magic Curiosity Arousing Tricks (MagicCATs): A novel stimulus collection to induce epistemic emotions. Preprint at PsyArXiv doi:10.31234/osf.io/qxdsn (2020).
• 80. Fastrich, G. M., Kerr, T., Castel, A. D. & Murayama, K. The role of interest in memory for trivia questions: An investigation with a large-scale database. Motiv. Sci. 4, 227–250 (2018).
• 81. Peirce, J. W. Generating stimuli for neuroscience using PsychoPy. Front. Neuroinform. 2, (2009).
• 82. Murayama, K., Matsumoto, M., Izuma, K. & Matsumoto, K. Neural basis of the undermining effect of monetary reward on intrinsic motivation. Proc. Natl. Acad. Sci. 107, 20911–20916 (2010).
• 83. Murayama, K. et al. How self-determined choice facilitates performance: A Key role of the ventromedial prefrontal cortex. Cereb. Cortex 25, 1241–1251 (2015).
• 84. Worsley, K. J. et al. A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp. 4, 58–73 (1996).
• 85. Pauli, W. M., Nili, A. N. & Tyszka, J. M. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci. Data 5, 180063 (2018).
• 86. Mumford, J. A., Poline, J.-B. & Poldrack, R. A. Orthogonalization of Regressors in fMRI Models. PLoS One 10, e0126255 (2015).
• 87. Rissman, J., Gazzaley, A. & D’Esposito, M. Measuring functional connectivity during distinct stages of a cognitive task. Neuroimage 23, 752–763 (2004).
• 88. Göttlich, M., Beyer, F. & Krämer, U. M. BASCO: a toolbox for task-related functional connectivity. Front. Syst. Neurosci. 9, (2015).
• 89. Tomasi, D. & Volkow, N. D. Laterality Patterns of Brain Functional Connectivity: Gender Effects. Cereb. Cortex 22, 1455–1462 (2012).
• 90. Wang, D., Buckner, R. L. & Liu, H. Functional Specialization in the Human Brain Estimated By Intrinsic Hemispheric Interaction. J. Neurosci. 34, 12341–12352 (2014).
• 91. Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 68, 255–278 (2013).
• 92. Brauer, M. & Curtin, J. J. Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychol. Methods 23, 389–411 (2018).
• 93. Murayama, K., Sakaki, M., Yan, V. X. & Smith, G. M. Type I error inflation in the traditional by-participant analysis to metamemory accuracy: A generalized mixed-effects model perspective. J. Exp. Psychol. Learn. Mem. Cogn. 40, 1287–1306 (2014).
• 94. Ludbrook, J. Interim analyses of data as they accumulate in laboratory experimentation. BMC Med. Res. Methodol. 3, 15 (2003).
• 95. Šidák, Z. Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. J. Am. Stat. Assoc. 62, 626–633 (1967).
• 96. Stone, M. Comments on Model Selection Criteria of Akaike and Schwarz. J. R. Stat. Soc. Ser. B 41, 276–278 (1979).
• 97. Wagenmakers, E.-J. A practical solution to the pervasive problems of p values. Psychon. Bull. Rev. 14, 779–804 (2007).
• 98. Masson, M. E. J. A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behav. Res. Methods 43, 679–690 (2011).
• 99. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).
• 100. Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R. & Kievit, R. A. Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open Res. 4, 63 (2019).
• 101. Muthén, L. K. & Muthén, B. O. Mplus User’s Guide. Seventh Edition. (2012).
• 102. Enders, C. K. & Tofighi, D. Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychol. Methods 12, 121–138 (2007).
• 103. McNeish, D., Stapleton, L. M. & Silverman, R. D. On the unnecessary ubiquity of hierarchical linear modeling. Psychol. Methods 22, 114–140 (2017).
• 104. Arend, M. G. & Schäfer, T. Statistical power in two-level models: A tutorial based on Monte Carlo simulation. Psychol. Methods 24, 1–19 (2019).
• 105. Leong, Y. C., Hughes, B. L., Wang, Y. & Zaki, J. Neurocomputational mechanisms underlying motivated seeing. Nat. Hum. Behav. 3, 962–973 (2019).
• 106. Geuter, S., Qi, G., Welsh, R. C., Wager, T. D. & Lindquist, M. A. Effect Size and Power in fMRI Group Analysis. Preprint at bioRxiv doi:10.1101/295048 (2018). University Staff: Request a correction | Centaur Editors: Update this record |