The effect of bilingualism on brain development from early childhood to young adulthoodPliatsikas, C. ORCID: https://orcid.org/0000-0001-7093-1773, Meteyard, L. ORCID: https://orcid.org/0000-0003-1184-1908, Veríssimo, J., DeLuca, V. ORCID: https://orcid.org/0000-0002-2275-209X, Shattuck, K. ORCID: https://orcid.org/0000-0002-9227-4134 and Ullman, M. T. ORCID: https://orcid.org/0000-0001-9037-3537 (2020) The effect of bilingualism on brain development from early childhood to young adulthood. Brain Structure and Function, 225. pp. 2131-2152. ISSN 1863-2661
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1007/s00429-020-02115-5 Abstract/SummaryBilingualism affects the structure of the brain in adults, as evidenced by experience-dependent grey and white matter changes in brain structures implicated in language learning, processing, or control. However, limited evidence exists on how bilingualism may influence brain development. We examined the developmental patterns of both grey and white matter structures in a cross-sectional study of a large sample (n=711 for grey matter, n=637 for white matter) of bilingual and monolingual participants, aged 3-21 years. Metrics of grey matter (thickness, volume, surface area) and white matter (fractional anisotropy, mean diffusivity) were examined across 41 cortical and subcortical brain structures and 20 tracts, respectively. We used generalized additive modelling to analyze whether, how, and where the developmental trajectories of bilinguals and monolinguals might differ. Bilingual and monolingual participants manifested distinct developmental trajectories in both grey and white matter structures. As compared to monolinguals, bilinguals showed: a) more grey matter (less developmental loss) starting during late childhood and adolescence, mainly in frontal and parietal regions (particularly in the inferior frontal gyrus pars opercularis, superior frontal cortex, inferior and superior parietal cortex, and precuneus); and b) higher white matter integrity (greater developmental increase) starting during mid-late adolescence, specifically in striatal-inferior frontal fibers. The data suggest that there may be a developmental basis to the well-documented structural differences in the brain between bilingual and monolingual adults.
DownloadsDownloads per month over past year
Abutalebi J, Canini M, Della Rosa PA, et al (2014a) Bilingualism protects anterior temporal lobe integrity in aging. Neurobiol Aging 35:1–8. https://doi.org/10.1016/j.neurobiolaging.2014.03.010
Abutalebi J, Canini M, Della Rosa PA, et al (2014b) The neuroprotective effects of bilingualism upon the inferior parietal lobule: A Structural Neuroimaging Study in Aging Chinese Bilinguals. J Neurolinguistics. https://doi.org/10.1016/j.jneuroling.2014.09.008
Abutalebi J, Green DW (2016) Neuroimaging of language control in bilinguals: neural adaptation and reserve. Biling Lang Cogn 19:689–698. https://doi.org/10.1017/S1366728916000225
Akshoomoff N, Newman E, Thompson WK, et al (2014) The NIH Toolbox Cognition Battery: Results from a large normative developmental sample (PING). Neuropsychology 28:1–10. https://doi.org/10.1037/neu0000001
Anderson JAE, Grundy JG, De Frutos J, et al (2018) Effects of bilingualism on white matter integrity in older adults. Neuroimage 167:143–150. https://doi.org/10.1016/j.neuroimage.2017.11.038
Archila-Suerte P, Woods EA, Chiarello C, Hernandez AE (2018) Neuroanatomical profiles of bilingual children. Dev Sci 21:e12654. https://doi.org/10.1111/desc.12654
Bakhtiari R, Boliek C, Cummine J, et al (2014) Investigating the contribution of ventral-lexical and dorsal-sublexical pathways during reading in bilinguals. Front Hum Neurosci 8:1–10. https://doi.org/10.3389/fnhum.2014.00507
Bakken TE, Dale AM, Schork NJ (2011) A Geographic Cline of Skull and Brain Morphology among Individuals of European Ancestry. Hum Hered 72:35–44. https://doi.org/10.1159/000330168
Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15:435–455. https://doi.org/10.1002/nbm.782
Bellander M, Berggren R, Mårtensson J, et al (2016) Behavioral correlates of changes in hippocampal gray matter structure during acquisition of foreign vocabulary. Neuroimage 131:205–213. https://doi.org/10.1016/j.neuroimage.2015.10.020
Borsa VM, Perani D, Della Rosa PA, et al (2018) Bilingualism and healthy aging: Aging effects and neural maintenance. Neuropsychologia 111:51–61. https://doi.org/10.1016/j.neuropsychologia.2018.01.012
Brito NH, Noble KG (2018) The independent and interacting effects of socioeconomic status and dual-language use on brain structure and cognition. Dev Sci 21:e12688. https://doi.org/10.1111/desc.12688
Burgaleta M, Sanjuán A, Ventura-Campos N, et al (2016) Bilingualism at the core of the brain. Structural differences between bilinguals and monolinguals revealed by subcortical shape analysis. Neuroimage 125:437–445. https://doi.org/10.1016/j.neuroimage.2015.09.073
Cavanna AE, Trimble MR (2006) The precuneus : a review of its functional anatomy and behavioural correlates. 564–583. https://doi.org/10.1093/brain/awl004
Chang L, Douet V, Bloss C, et al (2016) Gray matter maturation and cognition in children with different APOE ϵ genotypes. Neurology 87:585–594. https://doi.org/10.1212/WNL.0000000000002939
Chechik G, Meilijson I, Ruppin E (1998) Synaptic Pruning in Development: A Computational Account. Neural Comput 10:1759–1777. https://doi.org/10.1162/089976698300017124
de Bot K (2006) The Plastic Bilingual Brain: Synaptic Pruning or Growth? Commentary on Green, et al. Lang Learn 56:127–132. https://doi.org/10.1111/j.1467-9922.2006.00358.x
Del Maschio N, Sulpizio S, Toti M, et al (2019) Second language use rather than second language knowledge relates to changes in white matter microstructure. J Cult Cogn Sci 0123456789: https://doi.org/10.1007/s41809-019-00039-z
Della Rosa PA, Videsott G, Borsa VM, et al (2013) A neural interactive location for multilingual talent. Cortex 49:605–8. https://doi.org/10.1016/j.cortex.2012.12.001
DeLuca V, Rothman J, Bialystok E, Pliatsikas C (2019a) Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proc Natl Acad Sci 116:7565–7574. https://doi.org/10.1073/pnas.1811513116
DeLuca V, Rothman J, Pliatsikas C (2019b) Linguistic immersion and structural effects on the bilingual brain: a longitudinal study. Biling Lang Cogn 22:1160–1175. https://doi.org/10.1017/S1366728918000883
Desikan RS, Ségonne F, Fischl B, et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021
Draganski B, Gaser C, Busch V, et al (2004) Neuroplasticity: Changes in grey matter induced by training. Nature 427:311–312. https://doi.org/10.1038/427311a
Fan CC, Bartsch H, Schork AJ, et al (2015) Modeling the 3D Geometry of the Cortical Surface with Genetic Ancestry. Curr Biol 25:1988–1992. https://doi.org/10.1016/j.cub.2015.06.006
Filippi R, Richardson FM, Dick F, et al (2011) The right posterior paravermis and the control of language interference. J Neurosci 31:10732–10740. https://doi.org/10.1523/JNEUROSCI.1783-11.2011
Filippi R, Tomas EP, Papageorgiou A, Bright P (2020) A role for the cerebellum in the control of verbal interference: Comparison of bilingual and monolingual adults. PLoS One 15:1–13. https://doi.org/10.1371/journal.pone.0231288
Fischl B (2012) FreeSurfer. Neuroimage 62:774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021
Fischl B, Salat DH, Busa E, et al (2002) Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355. https://doi.org/10.1016/S0896-6273(02)00569-X
Fjell AM, Westlye LT, Amlien I, et al (2009) High Consistency of Regional Cortical Thinning in Aging across Multiple Samples. Cereb Cortex 19:2001–2012. https://doi.org/10.1093/cercor/bhn232
Foulkes L, Blakemore S-J (2018) Studying individual differences in human adolescent brain development. Nat Neurosci 21:315–323. https://doi.org/10.1038/s41593-018-0078-4
Friederici AD (2011) The brain basis of language processing: from structure to function. Physiol Rev 91:1357–92. https://doi.org/10.1152/physrev.00006.2011
García-Pentón L, Fernández García Y, Costello B, et al (2016) The neuroanatomy of bilingualism: how to turn a hazy view into the full picture. Lang Cogn Neurosci 3798:303–327. https://doi.org/10.1080/23273798.2015.1068944
Giedd JN (2004) Structural Magnetic Resonance Imaging of the Adolescent Brain. Ann N Y Acad Sci 1021:77–85. https://doi.org/10.1196/annals.1308.009
Golestani N (2014) Brain structural correlates of individual differences at low-to high-levels of the language processing hierarchy: A review of new approaches to imaging research. Int J Biling 18:6–34. https://doi.org/10.1177/1367006912456585
Green DW, Abutalebi J (2013) Language control in bilinguals: The adaptive control hypothesis. J Cogn Psychol 25:515–530. https://doi.org/10.1080/20445911.2013.796377
Grundy JG, Anderson JAE, Bialystok E (2017) Neural correlates of cognitive processing in monolinguals and bilinguals. Ann N Y Acad Sci 1396:183–201. https://doi.org/10.1111/nyas.13333
Hagler DJ, Ahmadi ME, Kuperman J, et al (2009) Automated white-matter tractography using a probabilistic diffusion tensor atlas: Application to temporal lobe epilepsy. Hum Brain Mapp 30:1535–1547. https://doi.org/10.1002/hbm.20619
Hämäläinen S, Joutsa J, Sihvonen AJ, et al (2018) Beyond volume: A surface-based approach to bilingualism-induced grey matter changes. Neuropsychologia 117:1–7. https://doi.org/10.1016/j.neuropsychologia.2018.04.038
Hayakawa S, Marian V (2019) Consequences of multilingualism for neural architecture. Behav Brain Funct 15:1–24. https://doi.org/10.1186/s12993-019-0157-z
Hernandez AE, Claussenius-Kalman HL, Ronderos J, Vaughn KA (2018) Symbiosis, Parasitism and Bilingual Cognitive Control: A Neuroemergentist Perspective. Front Psychol 9:. https://doi.org/10.3389/fpsyg.2018.02171
Hernandez AE, Greene MR, Vaughn K a., et al (2015) Beyond the bilingual advantage: The potential role of genes and environment on the development of cognitive control. J Neurolinguistics 35:109–119. https://doi.org/10.1016/j.jneuroling.2015.04.002
Herting MM, Johnson C, Mills KL, et al (2018) Development of subcortical volumes across adolescence in males and females: A multisample study of longitudinal changes. Neuroimage 172:194–205. https://doi.org/10.1016/j.neuroimage.2018.01.020
Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402. https://doi.org/10.1038/nrn2113
Ishibashi T, Dakin KA, Stevens B, et al (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49:823–832. https://doi.org/10.1016/j.neuron.2006.02.006
Jernigan TL, Brown TT, Hagler DJ, et al (2016) The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository. Neuroimage 124:1149–1154. https://doi.org/10.1016/j.neuroimage.2015.04.057
Kaiser A, Eppenberger LS, Smieskova R, et al (2015) Age of second language acquisition in multilinguals has an impact on gray matter volume in language-associated brain areas. Front Psychol 6:1–9. https://doi.org/10.3389/fpsyg.2015.00638
Klein D, Mok K, Chen J-K, Watkins KE (2014) Age of language learning shapes brain structure: A cortical thickness study of bilingual and monolingual individuals. Brain Lang 131:20–24. https://doi.org/10.1016/j.bandl.2013.05.014
Kuhl PK, Stevenson J, Corrigan NM, et al (2016) Neuroimaging of the bilingual brain: Structural brain correlates of listening and speaking in a second language. Brain Lang 162:1–9. https://doi.org/10.1016/j.bandl.2016.07.004
Lebel C, Deoni S (2018) The development of brain white matter microstructure. Neuroimage 182:207–218. https://doi.org/10.1016/j.neuroimage.2017.12.097
Lebel C, Treit S, Beaulieu C (2019) A review of diffusion MRI of typical white matter development from early childhood to young adulthood. NMR Biomed 32:e3778. https://doi.org/10.1002/nbm.3778
Lee H, Devlin JT, Shakeshaft C, et al (2007) Anatomical Traces of Vocabulary Acquisition in the Adolescent Brain. J Neurosci 27:1184–1189. https://doi.org/10.1523/JNEUROSCI.4442-06.2007
Li L, Abutalebi J, Emmorey K, et al (2017) How bilingualism protects the brain from aging: Insights from bimodal bilinguals. Hum Brain Mapp 38:4109–4124. https://doi.org/10.1002/hbm.23652
Li P, Legault J, Litcofsky KA (2014) Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex 58:301–324. https://doi.org/10.1016/j.cortex.2014.05.001
Lövdén M, Wenger E, Mårtensson J, et al (2013) Structural brain plasticity in adult learning and development. Neurosci Biobehav Rev 37:2296–2310. https://doi.org/10.1016/j.neubiorev.2013.02.014
Luk G, Bialystok E, Craik FIM, Grady CL (2011) Lifelong bilingualism maintains white matter integrity in older adults. J Neurosci 31:16808–13. https://doi.org/10.1523/JNEUROSCI.4563-11.2011
Luk G, Pliatsikas C (2016) Converging diversity to unity: commentary on The neuroanatomy of bilingualism. Lang Cogn Neurosci 31:349–352. https://doi.org/10.1080/23273798.2015.1119289
Luk G, Pliatsikas C, Rossi E (2020) Brain changes associated with language development and learning: A primer on methodology and applications. System 89:102209. https://doi.org/10.1016/j.system.2020.102209
Luo L, Leary DDMO (2005) Axon Retraction and Degeneration in Development and Disease. Annu Rev Neurosci 28:127–156. https://doi.org/10.1146/annurev.neuro.28.061604.135632
Maguire E, Gadian DG, Johnsrude IS, et al (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 97:4398–403. https://doi.org/10.1073/pnas.070039597
Mamiya PC, Richards TL, Coe BP, et al (2016) Brain white matter structure and COMT gene are linked to second-language learning in adults. Proc Natl Acad Sci 113:7249–7254. https://doi.org/10.1073/pnas.1606602113
Mårtensson J, Eriksson J, Bodammer NC, et al (2012) Growth of language-related brain areas after foreign language learning. Neuroimage 63:240–4. https://doi.org/10.1016/j.neuroimage.2012.06.043
Mechelli A, Crinion JT, Noppeney U, et al (2004) Neurolinguistics: Structural plasticity in the bilingual brain. Nature 431:757–757. https://doi.org/10.1038/431757a
Mills KL, Goddings AL, Herting MM, et al (2016) Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. Neuroimage 141:273–281. https://doi.org/10.1016/j.neuroimage.2016.07.044
Mohades SG, Struys E, Van Schuerbeek P, et al (2012) DTI reveals structural differences in white matter tracts between bilingual and monolingual children. Brain Res 1435:72–80. https://doi.org/10.1016/j.brainres.2011.12.005
Mohades SG, Struys E, Van Schuerbeek P, et al (2014) Age of second language acquisition affects nonverbal conflict processing in children: an fMRI study. Brain Behav 4:626–42. https://doi.org/10.1002/brb3.246
Mohades SG, Van Schuerbeek P, Rosseel Y, et al (2015) White-matter development is different in bilingual and monolingual children: a longitudinal DTI study. PLoS One 10:e0117968. https://doi.org/10.1371/journal.pone.0117968
Noble KG, Houston SM, Brito NH, et al (2015) Family income, parental education and brain structure in children and adolescents. Nat Neurosci 18:773–778. https://doi.org/10.1038/nn.3983
Olsen RK, Pangelinan MM, Bogulski C, et al (2015) The effect of lifelong bilingualism on regional grey and white matter volume. Brain Res 1612:128–139. https://doi.org/10.1016/j.brainres.2015.02.034
Olulade OA, Jamal NI, Koo DS, et al (2016) Neuroanatomical evidence in support of the bilingual advantage theory. Cereb Cortex 26:3196–3204. https://doi.org/10.1093/cercor/bhv152
Parker Jones O, Green DW, Grogan A, et al (2012) Where, when and why brain activation differs for bilinguals and monolinguals during picture naming and reading aloud. Cereb Cortex 22:892–902. https://doi.org/10.1093/cercor/bhr161
Patel CJ, Burford B, Ioannidis JPA (2015) Assessment of vibration of effects due to model specification can demonstrate the instability of observational associations. J Clin Epidemiol 68:1046–1058. https://doi.org/10.1016/j.jclinepi.2015.05.029
Perani D, Abutalebi J (2015) Bilingualism, dementia, cognitive and neural reserve. Curr Opin Neurol 28:618–625. https://doi.org/10.1097/WCO.0000000000000267
Pliatsikas C (2019) Multilingualism and brain plasticity. In: Schwieter J (ed) The Handbook of the Neuroscience of Multilingualism. Wiley- Blackwell, Hoboken, NJ, pp 230–251
Pliatsikas C (2020) Understanding structural plasticity in the bilingual brain: The Dynamic Restructuring Model. Biling Lang Cogn 23:459–471. https://doi.org/10.1017/S1366728919000130
Pliatsikas C, DeLuca V, Moschopoulou E, Saddy JD (2017) Immersive bilingualism reshapes the core of the brain. Brain Struct Funct 222:1785–1795. https://doi.org/10.1007/s00429-016-1307-9
Pliatsikas C, Johnstone T, Marinis T (2014) Grey Matter Volume in the Cerebellum is Related to the Processing of Grammatical Rules in a Second Language: A Structural Voxel-based Morphometry Study. The Cerebellum 13:55–63. https://doi.org/10.1007/s12311-013-0515-6
Pliatsikas C, Moschopoulou E, Saddy JD (2015) The effects of bilingualism on the white matter structure of the brain. Proc Natl Acad Sci 112:1334–1337. https://doi.org/10.1073/pnas.1414183112
Poldrack RA (2006) Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci 10:59–63. https://doi.org/10.1016/j.tics.2005.12.004
Poldrack RA (2011) Perspective Inferring Mental States from Neuroimaging Data : From Reverse Inference to Large-Scale Decoding. Neuron 72:692–697. https://doi.org/10.1016/j.neuron.2011.11.001
Qiu D, Tan L, Zhou K, Khong P (2008) Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood : Voxel-wise evaluation of mean diffusivity , fractional anisotropy , radial and axial diffusivities , and correlation with reading development. 41:223–232. https://doi.org/10.1016/j.neuroimage.2008.02.023
Quallo MM, Price CJ, Ueno K, et al (2009) Gray and white matter changes associated with tool-use learning in macaque monkeys. Proc Natl Acad Sci 106:18379–18384. https://doi.org/10.1073/pnas.0909751106
R Core Team (2014) nlme: linear and nonlinear mixed effects models.
Rahmani F, Sobhani S, Aarabi MH (2017) Sequential language learning and language immersion in bilingualism: diffusion MRI connectometry reveals microstructural evidence. Exp Brain Res 235:2935–2945. https://doi.org/10.1007/s00221-017-5029-x
Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12:718–724. https://doi.org/10.1038/nn.2331
Remer J, Croteau-Chonka E, Dean DC, et al (2017) Quantifying cortical development in typically developing toddlers and young children, 1–6 years of age. Neuroimage 153:246–261. https://doi.org/10.1016/j.neuroimage.2017.04.010
Ressel V, Pallier C, Ventura-Campos N, et al (2012) An effect of bilingualism on the auditory cortex. J Neurosci 32:16597–601. https://doi.org/10.1523/JNEUROSCI.1996-12.2012
Reyes A, Uttarwar VS, Chang Y-HA, et al (2018) Decreased neurite density within frontostriatal networks is associated with executive dysfunction in temporal lobe epilepsy. Epilepsy Behav 78:187–193. https://doi.org/10.1016/j.yebeh.2017.09.012
Richardson FM, Thomas MSC, Filippi R, et al (2010) Contrasting effects of vocabulary knowledge on temporal and parietal brain structure across lifespan. J Cogn Neurosci 22:943–954. https://doi.org/10.1162/jocn.2009.21238
Romeo RR, Christodoulou JA, Halverson KK, et al (2018) Socioeconomic status and reading disability: Neuroanatomy and plasticity in response to intervention. Cereb Cortex 28:2297–2312. https://doi.org/10.1093/cercor/bhx131
Rossi E, Cheng H, Kroll JF, et al (2017) Changes in white-matter connectivity in late second language learners: Evidence from diffusion tensor imaging. Front Psychol 8:1–15. https://doi.org/10.3389/fpsyg.2017.02040
Scholz J, Klein MC, Behrens TEJ, Johansen-berg H (2010) Training induces changes in white matter architecture. Nat Neurosci 12:1370–1371. https://doi.org/10.1038/nn.2412.Training
Seeley WW, Menon V, Schatzberg AF, et al (2007) Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. J Neurosci 27:2349–2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007
Shen K, Welton T, Lyon M, et al (2019) Structural core of the executive control network: A high angular resolution diffusion MRI study. Hum Brain Mapp hbm.24870. https://doi.org/10.1002/hbm.24870
Singh NC, Rajan A, Malagi A, et al (2018) Microstructural anatomical differences between bilinguals and monolinguals. Biling Lang Cogn 21:995–1008. https://doi.org/10.1017/S1366728917000438
Stein M, Winkler C, Kaiser A, Dierks T (2014) Structural brain changes related to bilingualism: does immersion make a difference? Front Psychol 5:1116. https://doi.org/10.3389/fpsyg.2014.01116
Tagarelli KM, Shattuck KF, Turkeltaub PE, Ullman MT (2019) Language learning in the adult brain: A neuroanatomical meta-analysis of lexical and grammatical learning. Neuroimage 193:178–200. https://doi.org/10.1016/j.neuroimage.2019.02.061
Takeuchi H, Sekiguchi A, Taki Y, et al (2010) Training of Working Memory Impacts Structural Connectivity. J Neurosci 30:3297–3303. https://doi.org/10.1523/JNEUROSCI.4611-09.2010
Tamnes CK, Herting MM, Goddings AL, et al (2017) Development of the cerebral cortex across adolescence: A multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. J Neurosci 37:3402–3412. https://doi.org/10.1523/JNEUROSCI.3302-16.2017
Tamnes CK, Østby Y (2018) Morphometry and development: Changes in brain structure from birth to adult age. Neuromethods 136:143–164. https://doi.org/10.1007/978-1-4939-7647-8_10
Taubert M, Draganski B, Anwander A, et al (2010) Dynamic Properties of Human Brain Structure: Learning-Related Changes in Cortical Areas and Associated Fiber Connections. J Neurosci 30:11670–11677. https://doi.org/10.1523/JNEUROSCI.2567-10.2010
Thieba C, Long X, Dewey D, Lebel C (2019) Young children in different linguistic environments: A multimodal neuroimaging study of the inferior frontal gyrus. Brain Cogn 134:71–79. https://doi.org/10.1016/j.bandc.2018.05.009
Tiemeier H, Lenroot RK, Greenstein DK, et al (2010) Cerebellum development during childhood and adolescence: A longitudinal morphometric MRI study. Neuroimage 49:63–70. https://doi.org/10.1016/j.neuroimage.2009.08.016
Ullman MT (2020) The Declarative/Procedural Model: A Neurobiologically-Motivated Theory of First and Second Language. In: VanPatten B, Keating GD, Wulff S (eds) Theories in Second Language Acquisition, 3rd edition. Routledge, 3rd edn. Routledge
Ullman MT (2016) The Declarative / Procedural Model : A Neurobiological Model of Language. In: Hickok G, Small SA (eds) The Neurobiology of Language. Elsevier, pp 953–68
Ullman MT (2004) Contributions of memory circuits to language: the declarative/procedural model. Cognition 92:231–70. https://doi.org/10.1016/j.cognition.2003.10.008
Ullman MT, Earle FS, Walenski M, Janacsek K (2020) The Neurocognition of Developmental Disorders of Language. Annu Rev Psychol 71:5.1-5.29. https://doi.org/10.1146/annurev-psych-122216-011555
Valian V (2015) Bilingualism and cognition. Biling Lang Cogn 18:3–24. https://doi.org/10.1017/S1366728914000522
Vijayakumar N, Mills KL, Alexander-Bloch A, et al (2018) Structural brain development: A review of methodological approaches and best practices. Dev Cogn Neurosci 33:129–148. https://doi.org/10.1016/j.dcn.2017.11.008
Voits T, Robson H, Rothman J, Pliatsikas C The effects of bilingualism on the structure of the hippocampus and on memory performance in ageing bilinguals
Wallentin M, Weed E, Østergaard L, et al (2008) Accessing the Mental Space — Spatial Working Memory Processes for Language and Vision Overlap in Precuneus. Hum Brain Mapp 29:524–532. https://doi.org/10.1002/hbm.20413
Whitaker KJ, Vértes PE, Romero-Garcia R, et al (2016) Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc Natl Acad Sci 113:9105–9110. https://doi.org/10.1073/pnas.1601745113
Wierenga L, Langen M, Ambrosino S, et al (2014) Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24. Neuroimage 96:67–72. https://doi.org/10.1016/j.neuroimage.2014.03.072
Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B (Statistical Methodol 73:3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x
Yendiki A, Panneck P, Srinivasan P, et al (2011) Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front Neuroinform 5:1–12. https://doi.org/10.3389/fninf.2011.00023
Zatorre RJ, Fields R., Johansen-Berg H (2013) Plasticity in Gray and White : Neuroimaging changes in brain structure during learning. Nat Neurosci 15:528–536. https://doi.org/10.1038/nn.3045.Plasticity University Staff: Request a correction | Centaur Editors: Update this record |