1. May, A. Experience-dependent structural plasticity in the adult human brain. Trends Cogn. Sci. 15, 475–482 (2011).
2. Sampaio-Baptista, C. & Johansen-Berg, H. White Matter Plasticity in the Adult Brain. Neuron 96, 1239–1251 (2017).
3. Li, P., Legault, J. & Litcofsky, K. A. Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex 58, 301–324 (2014).
4. Lövdén, M., Wenger, E., Mårtensson, J., Lindenberger, U. & Bäckman, L. Structural brain plasticity in adult learning and development. Neurosci. Biobehav. Rev. 37, 2296–2310 (2013).
5. Zatorre, R. J., Fields, R. . D. & Johansen-Berg, H. Plasticity in Gray and White : Neuroimaging changes in brain structure during learning. Nat. Neurosci. 15, 528–536 (2013).
6. Pliatsikas, C. Understanding structural plasticity in the bilingual brain: The Dynamic Restructuring Model. Biling. Lang. Cogn. 23, 459–471 (2020).
7. Sampaio-Baptista, C. & Johansen-Berg, H. White Matter Plasticity in the Adult Brain. Neuron 96, 1239–1251 (2017).
8. Soares, D. P. & Law, M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin. Radiol. 64, 12–21 (2009).
9. Wilson, M. et al. Methodological consensus on clinical proton MRS of the brain: Review and recommendations. Magn. Reson. Med. 82, 527–550 (2019).
10. Clarke, C. E. & Lowry, M. Basal ganglia metabolite concentrations in idiopathic Parkinson’s disease and multiple system atrophy measured by proton magnetic resonance spectroscopy. Eur. J. Neurol. 7, 661–665 (2000).
11. Sturrock, A. et al. Magnetic resonance spectroscopy biomarkers in premanifest and early Huntington disease. Neurology 75, 1702–1710 (2010).
12. Kantarci, K. et al. Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 28, 1330–1339 (2007).
13. Srinivasan, R., Sailasuta, N., Hurd, R., Nelson, S. & Pelletier, D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 128, 1016–1025 (2005).
14. Catani, M. et al. Axonal injury within language network in primary progressive aphasia. Ann. Neurol. 53, 242–247 (2003).
15. Del Tufo, S. N. et al. Neurochemistry Predicts Convergence of Written and Spoken Language: A Proton Magnetic Resonance Spectroscopy Study of Cross-Modal Language Integration. Front. Psychol. 9, 1507 (2018).
16. Ferrier, C. H. et al. N-Acetylaspartate and creatine levels measured by 1H MRS relate to recognition memory. Neurology 55, 1874–1883 (2000).
17. Quetscher, C. et al. Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates. Brain Struct. Funct. 220, 3555–3564 (2015).
18. Reyngoudt, H. et al. Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain : A 1 H-MRS study. Eur. J. Radiol. 81, e223–e231 (2012).
19. Chiu, P.-W. et al. Metabolic changes in the anterior and posterior cingulate cortices of the normal aging brain: proton magnetic resonance spectroscopy study at 3 T. Age (Omaha). 36, 251–264 (2014).
20. Cleeland, C., Pipingas, A., Scholey, A. & White, D. Neurochemical changes in the aging brain: A systematic review. Neurosci. Biobehav. Rev. 98, 306–319 (2019).
21. Rango, M. et al. Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: A 1H-MRS study. Magn. Reson. Med. 60, 782–789 (2008).
22. Bernabeu, Á., Alfaro, A., García, M. & Fernández, E. Proton magnetic resonance spectroscopy (1H-MRS) reveals the presence of elevated myo-inositol in the occipital cortex of blind subjects. Neuroimage 47, 1172–1176 (2009).
23. Weaver, K. E., Richards, T. L., Saenz, M., Petropoulos, H. & Fine, I. Neurochemical changes within human early blind occipital cortex. Neuroscience 252, 222–233 (2013).
24. Merabet, L. B. & Pascual-Leone, A. Neural reorganization following sensory loss: The opportunity of change. Nat. Rev. Neurosci. 11, 44–52 (2010).
25. Noppeney, U. The effects of visual deprivation on functional and structural organization of the human brain. Neurosci. Biobehav. Rev. 31, 1169–1180 (2007).
26. Alfaro, A., Bernabeu, Á., Agulló, C., Parra, J. & Fernández, E. Hearing colors: An example of brain plasticity. Front. Syst. Neurosci. 9, 1–9 (2015).
27. Green, D. W. & Abutalebi, J. Language control in bilinguals: The adaptive control hypothesis. J. Cogn. Psychol. 25, 515–530 (2013).
28. Abutalebi, J. & Green, D. W. Neuroimaging of language control in bilinguals: neural adaptation and reserve. Biling. Lang. Cogn. 19, 689–698 (2016).
29. Green, D. W. Language Control and Code-switching. Languages 3, 8 (2018).
30. Valian, V. Bilingualism and cognition. Biling. Lang. Cogn. 18, 3–24 (2015).
31. Pliatsikas, C. & Luk, G. Executive control in bilinguals: A concise review on fMRI studies. Biling. Lang. Cogn. 19, 699–705 (2016).
32. Perani, D. et al. The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer’s dementia. Proc. Natl. Acad. Sci. 114, 1690–1695 (2017).
33. DeLuca, V., Rothman, J. & Pliatsikas, C. Linguistic immersion and structural effects on the bilingual brain: a longitudinal study. Biling. Lang. Cogn. 22, 1160–1175 (2019).
34. Mohades, S. G. et al. White-matter development is different in bilingual and monolingual children: a longitudinal DTI study. PLoS One 10, e0117968 (2015).
35. Hosoda, C., Tanaka, K., Nariai, T., Honda, M. & Hanakawa, T. Dynamic neural network reorganization associated with second language vocabulary acquisition: a multimodal imaging study. J. Neurosci. 33, 13663–72 (2013).
36. Mårtensson, J. et al. Growth of language-related brain areas after foreign language learning. Neuroimage 63, 240–4 (2012).
37. Pliatsikas, C., DeLuca, V. & Voits, T. The Many Shades of Bilingualism: Language Experiences Modulate Adaptations in Brain Structure. Lang. Learn. 70, 133–149 (2020).
38. DeLuca, V., Rothman, J., Bialystok, E. & Pliatsikas, C. Duration and extent of bilingual experience modulate neurocognitive outcomes. Neuroimage 204, 116222 (2020).
39. DeLuca, V., Rothman, J., Bialystok, E. & Pliatsikas, C. Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proc. Natl. Acad. Sci. 116, 7565–7574 (2019).
40. Gullifer, J. W. & Titone, D. Characterizing the social diversity of bilingualism using language entropy. Biling. Lang. Cogn. 1–12 (2019) doi:10.1017/S1366728919000026.
41. Pliatsikas, C., DeLuca, V., Moschopoulou, E. & Saddy, J. D. Immersive bilingualism reshapes the core of the brain. Brain Struct. Funct. 222, 1785–1795 (2017).
42. Hervais-Adelman, A., Egorova, N. & Golestani, N. Beyond bilingualism: multilingual experience correlates with caudate volume. Brain Struct. Funct. 223, 3495–3502 (2018).
43. Burgaleta, M., Sanjuán, A., Ventura-Campos, N., Sebastián-Gallés, N. & Ávila, C. Bilingualism at the core of the brain. Structural differences between bilinguals and monolinguals revealed by subcortical shape analysis. Neuroimage 125, 437–445 (2016).
44. Abutalebi, J. et al. The role of the left putamen in multilingual language production. Brain Lang. 125, 307–315 (2013).
45. Weekes, B. S. et al. Effect of monolingualism and bilingualism in the anterior cingulate cortex: a proton magnetic resonance spectroscopy study in two centers. Let. Hoje 53, 5–12 (2018).
46. DeLuca, V., Segaert, K., Mazaheri, A. & Krott, A. Understanding bilingual brain function and structure changes? U Bet! A Unified Bilingual Experience Trajectory model Vincent. J. Neurolinguistics (2020).
47. Hattingen, E. et al. Myo-Inositol: a marker of reactive astrogliosis in glial tumors? NMR Biomed. 21, 233–241 (2008).
48. Schneider, P. et al. Central metabolite changes and activation of microglia after peripheral interleukin-2 challenge. Brain. Behav. Immun. 26, 277–283 (2012).
49. Verkhratsky, A., Rodríguez, J. J. & Parpura, V. Neuroglia in ageing and disease. Cell Tissue Res. 357, 493–503 (2014).
50. Neil, J. & Ackerman, J. J. H. Magnetic Resonance Spectroscopy. in Encyclopedia of the neurological sciences (eds. Daroff, R. B. & Aminoff, M. J.) 973–976 (Academic press, 2014).
51. Horská, A. et al. In vivo quantitative proton MRSI study of brain development from childhood to adolescence. J. Magn. Reson. Imaging 15, 137–143 (2002).
52. Voits, T., Pliatsikas, C., Robson, H. & Rothman, J. Beyond Alzheimer’s disease: Can bilingualism be a more generalized protective factor in neurodegeneration? Neuropsychologia 107593 (2020) doi:10.1016/j.neuropsychologia.2020.107593.
53. Anderson, J. A. E., Mak, L., Keyvani Chahi, A. & Bialystok, E. The language and social background questionnaire: Assessing degree of bilingualism in a diverse population. Behav. Res. Methods 50, 250–263 (2018).
54. Haase, A., Frahm, J., Hanicke, W. & Matthaei, D. 1H NMR chemical shift selective (CHESS) imaging. Phys. Med. Biol. 30, 341–344 (1985).
55. Naressi, A. et al. Java-based graphical user interface for the MRUI quantitation package. Magma Magn. Reson. Mater. Physics, Biol. Med. 12, 141–152 (2001).
56. Jiru, F. Introduction to post-processing techniques. Eur. J. Radiol. 67, 202–217 (2008).
57. Cabanes, E., Confort-Gouny, S., Le Fur, Y., Simond, G. & Cozzone, P. J. Optimization of Residual Water Signal Removal by HLSVD on Simulated Short Echo Time Proton MR Spectra of the Human Brain. J. Magn. Reson. 150, 116–125 (2001).
58. Bell, T., Lindner, M., Mullins, P. G. & Christakou, A. Functional neurochemical imaging of the human striatal cholinergic system during reversal learning. Eur. J. Neurosci. 47, 1184–1193 (2018).
59. Minati, L., Aquino, D., Bruzzone, M. & Erbetta, A. Quantitation of normal metabolite concentrations in six brain regions by in-vivo 1 H-MR spectroscopy. J. Med. Phys. 35, 154 (2010).
60. Gasparovic, C. et al. Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn. Reson. Med. 55, 1219–1226 (2006).
61. Ben‐Eliezer, N., Sodickson, D. K., Shepherd, T., Wiggins, G. C. & Block, K. T. Accelerated and motion‐robust in vivo mapping from radially undersampled data using bloch‐simulation‐based iterative reconstruction. Magn. Reson. Med. 75, 1346–1354 (2016).
62. Dieringer, M. A. et al. Rapid Parametric Mapping of the Longitudinal Relaxation Time T1 Using Two-Dimensional Variable Flip Angle Magnetic Resonance Imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla. PLoS One 9, e91318 (2014).
63. Liberman, G., Louzoun, Y. & Ben Bashat, D. T 1 Mapping using variable flip angle SPGR data with flip angle correction. J. Magn. Reson. Imaging 40, 171–180 (2014).
64. Posse, S. et al. Proton echo-planar spectroscopic imaging of J-coupled resonances in human brain at 3 and 4 Tesla. Magn. Reson. Med. 58, 236–244 (2007).
65. Pradhan, S. et al. Non-invasive measurement of biochemical profiles in the healthy fetal brain. Neuroimage 219, 117016 (2020).
66. Maghsudi, H. et al. Regional Metabolite Concentrations in Aging Human Brain: Comparison of Short-TE Whole Brain MR Spectroscopic Imaging and Single Voxel Spectroscopy at 3T. Clin. Neuroradiol. 30, 251–261 (2020).
67. Nagashima, H. et al. Myo-inositol concentration in MR spectroscopy for differentiating high grade glioma from primary central nervous system lymphoma. J. Neurooncol. 136, 317–326 (2018).
68. Bell, T., Lindner, M., Langdon, A., Mullins, P. G. & Christakou, A. Regional Striatal Cholinergic Involvement in Human Behavioral Flexibility. J. Neurosci. 39, 5740–5749 (2019).
69. Lindner, M., Bell, T., Iqbal, S., Mullins, P. G. & Christakou, A. In vivo functional neurochemistry of human cortical cholinergic function during visuospatial attention. PLoS One 12, e0171338 (2017).
70. R Core Team. nlme: linear and nonlinear mixed effects models. (2014).
71. Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Statistical Methodol. 73, 3–36 (2011).
72. Chang, L. et al. Gray matter maturation and cognition in children with different APOE ϵ genotypes. Neurology 87, 585–594 (2016).
73. Tamnes, C. K. et al. Development of the cerebral cortex across adolescence: A multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. J. Neurosci. 37, 3402–3412 (2017).
74. Pliatsikas, C. et al. The effect of bilingualism on brain development from early childhood to young adulthood. Brain Struct. Funct. (2020) doi:10.1007/s00429-020-02115-5.
75. Patel, C. J., Burford, B. & Ioannidis, J. P. A. Assessment of vibration of effects due to model specification can demonstrate the instability of observational associations. J. Clin. Epidemiol. 68, 1046–1058 (2015).