1. Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr., et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640-1645, doi:10.1161/CIRCULATIONAHA.109.192644.
2. Roberts, C.K.; Sindhu, K.K. Oxidative stress and metabolic syndrome. Life Sci 2009, 84, 705-712, doi:10.1016/j.lfs.2009.02.026.
3. Barale, C.; Russo, I. Influence of Cardiometabolic Risk Factors on Platelet Function. Int J Mol Sci 2020, 21, doi:10.3390/ijms21020623.
4. Qiao, J.; Arthur, J.F.; Gardiner, E.E.; Andrews, R.K.; Zeng, L.; Xu, K. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol 2018, 14, 126-130, doi:10.1016/j.redox.2017.08.021.
5. Chen, K.; Detwiler, T.C.; Essex, D.W. Characterization of protein disulphide isomerase released from activat- ed platelets. Br J Haematol 1995, 90, 425-431.
6. Kim, K.; Hahm, E.; Li, J.; Holbrook, L.M.; Sasikumar, P.; Stanley, R.G.; Ushio-Fukai, M.; Gibbins, J.M.; Cho, J. Platelet protein disulfide isomerase is required for thrombus formation but not for hemostasis in mice. Blood 2013, 122, 1052-1061, doi:10.1182/blood-2013-03-492504.
7. Schwaller, M.; Wilkinson, B.; Gilbert, H.F. Reduction-reoxidation cycles contribute to catalysis of disulfide isomerization by protein-disulfide isomerase. J Biol Chem 2003, 278, 7154-7159, doi:10.1074/jbc.M211036200.
8. Crescente, M.; Pluthero, F.G.; Li, L.; Lo, R.W.; Walsh, T.G.; Schenk, M.P.; Holbrook, L.M.; Lo1u3riero, S.; Ali, M.S.; Vaiyapuri, S., et al. Intracellular Trafficking, Localization, and Mobilization of Platelet-Borne Thi- ol Isomerases. Arterioscler Thromb Vasc Biol 2016, 36, 1164-1173, doi:10.1161/ATVBAHA.116.307461.
9. Cho, J.; Kennedy, D.R.; Lin, L.; Huang, M.; Merrill-Skoloff, G.; Furie, B.C.; Furie, B. Protein disulfide iso- merase capture during thrombus formation in vivo depends on the presence of beta3 integrins. Blood 2012, 120, 647-655, doi:10.1182/blood-2011-08-372532.
10. Lahav, J.; Wijnen, E.M.; Hess, O.; Hamaia, S.W.; Griffiths, D.; Makris, M.; Knight, C.G.; Essex, D.W.; Farn- dale, R.W. Enzymatically catalyzed disulfide exchange is required for platelet adhesion to collagen via integ- rin alpha2beta1. Blood 2003, 102, 2085-2092, doi:10.1182/blood-2002-06-1646.
11. Burgess, J.K.; Hotchkiss, K.A.; Suter, C.; Dudman, N.P.; Szollosi, J.; Chesterman, C.N.; Chong, B.H.; Hogg, P.J. Physical proximity and functional association of glycoprotein 1balpha and protein-disulfide isomerase on the platelet plasma membrane. J Biol Chem 2000, 275, 9758-9766.
12. Gimenez, M.; Verissimo-Filho, S.; Wittig, I.; Schickling, B.M.; Hahner, F.; Schurmann, C.; Netto, L.E.S.; Rosa, J.C.; Brandes, R.P.; Sartoretto, S., et al. Redox Activation of Nox1 (NADPH Oxidase 1) Involves an In- termolecular Disulfide Bond Between Protein Disulfide Isomerase and p47(phox) in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2019, 39, 224-236, doi:10.1161/ATVBAHA.118.311038.
13. Walsh, T.G.; Berndt, M.C.; Carrim, N.; Cowman, J.; Kenny, D.; Metharom, P. The role of Nox1 and Nox2 in GPVI-dependent platelet activation and thrombus formation. Redox Biol 2014, 2, 178-186, doi:10.1016/j.redox.2013.12.023.
14. Bayraktutan, U.; Blayney, L.; Shah, A.M. Molecular characterization and localization of the NAD(P)H oxi- dase components gp91-phox and p22-phox in endothelial cells. Arterioscler Thromb Vasc Biol 2000, 20, 1903-1911.
15. Griendling, K.K.; Minieri, C.A.; Ollerenshaw, J.D.; Alexander, R.W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994, 74, 1141-1148.
16. Seno, T.; Inoue, N.; Gao, D.; Okuda, M.; Sumi, Y.; Matsui, K.; Yamada, S.; Hirata, K.I.; Kawashima, S.; Ta- wa, R., et al. Involvement of NADH/NADPH oxidase in human platelet ROS production. Thromb Res 2001, 103, 399-409.
17. Delaney, M.K.; Kim, K.; Estevez, B.; Xu, Z.; Stojanovic-Terpo, A.; Shen, B.; Ushio-Fukai, M.; Cho, J.; Du, X. Differential Roles of the NADPH-Oxidase 1 and 2 in Platelet Activation and Thrombosis. Arterioscler Thromb Vasc Biol 2016, 36, 846-854, doi:10.1161/ATVBAHA.116.307308.
18. Vara, D.; Campanella, M.; Pula, G. The novel NOX inhibitor 2-acetylphenothiazine impairs collagen- dependent thrombus formation in a GPVI-dependent manner. Br J Pharmacol 2013, 168, 212-224, doi:10.1111/j.1476-5381.2012.02130.x.
19. Vara, D.; Cifuentes-Pagano, E.; Pagano, P.J.; Pula, G. A novel combinatorial technique for simultaneous quantification of oxygen radicals and aggregation reveals unexpected redox patterns in the activation of plate- lets by different physiopathological stimuli. Haematologica 2019, 104, 1879-1891, doi:10.3324/haematol.2018.208819.
20. Gaspar, R.S.; Trostchansky, A.; Paes, A.M. Potential Role of Protein Disulfide Isomerase in Metabolic Syn- drome-Derived Platelet Hyperactivity. Oxid Med Cell Longev 2016, 2016, 2423547, doi:10.1155/2016/2423547.
21. Qiu, S.; Mintz, J.D.; Salet, C.D.; Han, W.; Giannis, A.; Chen, F.; Yu, Y.; Su, Y.; Fulton, D.J.; Stepp, D.W. Increasing muscle mass improves vascular function in obese (db/db) mice. J Am Heart Assoc 2014, 3, e000854, doi:10.1161/JAHA.114.000854.
22. Gaspar, R.S.; da Silva, S.A.; Stapleton, J.; Fontelles, J.L.L.; Sousa, H.R.; Chagas, V.T.; Alsufyani, S.; Trost- chansky, A.; Gibbins, J.M.; Paes, A.M.A. Myricetin, the Main Flavonoid in Syzygium cumini Leaf, Is a Nov- el Inhibitor of Platelet Thiol Isomerases PDI and ERp5. Front Pharmacol 2019, 10, 1678, doi:10.3389/fphar.2019.01678.
23. Gavazzi, G.; Banfi, B.; Deffert, C.; Fiette, L.; Schappi, M.; Herrmann, F.; Krause, K.H. Decreased blood pres- sure in NOX1-deficient mice. FEBS Lett 2006, 580, 497-504, doi:10.1016/j.febslet.2005.12.049.
24. Bye, A.P.; Unsworth, A.J.; Desborough, M.J.; Hildyard, C.A.T.; Appleby, N.; Bruce, D.; Kriek, N.; Nock, S.H.; Sage, T.; Hughes, C.E., et al. Severe platelet dysfunction in NHL patients receiving ibrutinib is absent in patients receiving acalabrutinib. Blood Adv 2017, 1, 2610-2623, doi:10.1182/bloodadvances.2017011999.
25. Morton, L.; Hargreaves, P.; Farndale, R.; Young, R.; Barnes, M. Integrin α 2 β 1-independent activation of platelets by simple collagen-like peptides: collagen tertiary (triple-helical) and quaternary (polymeric) struc-tures are sufficient alone for α 2 β 1-independent platelet reactivity. Biochemical Journal 1995, 306, 337-344.
26. Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M. 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension 2020, 75, 1334-1357.
27. Association, A.D. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2019. Diabetes care 2019, 42, S13-S28.
28. Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis 2019, 290, 140-205.
29. Santilli, F.; Vazzana, N.; Liani, R.; Guagnano, M.; Davì, G. Platelet activation in obesity and metabolic syn- drome. Obesity reviews 2012, 13, 27-42.
30. El Haouari, M.; Rosado, J.A. Platelet function in hypertension. Blood Cells, Molecules, and Diseases 2009, 42, 38-43.
31. Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. The Lancet 2020, 395, 795-808.
32. Fernandes, D.C.; Manoel, A.H.; Wosniak, J., Jr.; Laurindo, F.R. Protein disulfide isomerase overexpression in vascular smooth muscle cells induces spontaneous preemptive NADPH oxidase activation and Nox1 mRNA expression: effects of nitrosothiol exposure. Arch Biochem Biophys 2009, 484, 197-204, doi:10.1016/j.abb.2009.01.022.
33. Matsumoto, M.; Katsuyama, M.; Iwata, K.; Ibi, M.; Zhang, J.; Zhu, K.; Nauseef, W.M.; Yabe-Nishimura, C. Characterization of N-glycosylation sites on the extracellular domain of NOX1/NADPH oxidase. Free Radic Biol Med 2014, 68, 196-204, doi:10.1016/j.freeradbiomed.2013.12.013.
34. Lu, W.J.; Li, J.Y.; Chen, R.J.; Huang, L.T.; Lee, T.Y.; Lin, K.H. VAS2870 and VAS3947 attenuate platelet activation and thrombus formation via a NOX-independent pathway downstream of PKC. Sci Rep 2019, 9, 18852, doi:10.1038/s41598-019-55189-5.
35. Gilio, K.; Munnix, I.C.; Mangin, P.; Cosemans, J.M.; Feijge, M.A.; Van der Meijden, P.E.; Olieslagers, S.; Chrzanowska-Wodnicka, M.B.; Lillian, R.; Schoenwaelder, S. Non-redundant roles of phosphoinositide 3- kinase isoforms α and β in glycoprotein VI-induced platelet signaling and thrombus formation. Journal of Biological Chemistry 2009, 284, 33750-33762.
36. Chen, J.; De, S.; Damron, D.S.; Chen, W.S.; Hay, N.; Byzova, T.V. Impaired platelet responses to thrombin and collagen in AKT-1–deficient mice. Blood 2004, 104, 1703-1710.
37. Pravin, P.; Ulhas, P.N. Platelet MAPKs a 20+ year History: What Do We Really Know? Journal of throm- bosis and haemostasis: JTH.
38. Mazharian, A.; Roger, S.; Maurice, P.; Berrou, E.; Popoff, M.R.; Hoylaerts, M.F.; Fauvel-Lafeve, F.; Bonnefoy, A.; Bryckaert, M. Differential involvement of ERK2 and p38 in platelet adhesion to collagen. Journal of Biological Chemistry 2005, 280, 26002-26010.
39. Kim, S.; Jin, J.; Kunapuli, S.P. Akt activation in platelets depends on Gi signaling pathways. Journal of Bio- logical Chemistry 2004, 279, 4186-4195.
40. Lopes Pires, M.E.; Antunes Naime, A.C.; Oliveira, J.G.F.; Anhe, G.F.; Garraud, O.; Cognasse, F.; Antunes, E.; Marcondes, S. Signalling pathways involved in p47(phox) -dependent reactive oxygen species in platelets of endotoxemic rats. Basic Clin Pharmacol Toxicol 2019, 124, 394-403, doi:10.1111/bcpt.13148.
41. Androwiki, A.C.; Camargo Lde, L.; Sartoretto, S.; Couto, G.K.; Ribeiro, I.M.; Verissimo-Filho, S.; Rossoni, L.V.; Lopes, L.R. Protein disulfide isomerase expression increases in resistance arteries during hypertension development. Effects on Nox1 NADPH oxidase signaling. Front Chem 2015, 3, 24, doi:10.3389/fchem.2015.00024.
42. DeVallance, E.; Li, Y.; Jurczak, M.J.; Cifuentes-Pagano, E.; Pagano, P.J. The Role of NADPH Oxidases in the Etiology of Obesity and Metabolic Syndrome: Contribution of Individual Isoforms and Cell Biology. An- tioxid Redox Signal 2019, 31, 687-709, doi:10.1089/ars.2018.7674.
43. Chien, C.Y.; Hung, Y.J.; Shieh, Y.S.; Hsieh, C.H.; Lu, C.H.; Lin, F.H.; Su, S.C.; Lee, C.H. A novel potential biomarker for metabolic syndrome in Chinese adults: Circulating protein disulfide isomerase family A, mem- ber 4. PLoS One 2017, 12, e0179963, doi:10.1371/journal.pone.0179963.
44. Roberts, C.K.; Sindhu, K.K. Oxidative stress and metabolic syndrome. Life sciences 2009, 84, 705-712. Ozcan, L.; Tabas, I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annual review of medicine 2012, 63, 317-328.
45. Ozcan, L.; Tabas, I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annual review of medicine 2012, 63, 317-328.
46. Camargo, L.L.; Harvey, A.P.; Rios, F.J.; Tsiropoulou, S.; Da Silva, R.d.N.O.; Cao, Z.; Graham, D.; McMas- ter, C.; Burchmore, R.J.; Hartley, R.C. Vascular Nox (NADPH oxidase) compartmentalization, protein hype- roxidation, and endoplasmic reticulum stress response in hypertension. Hypertension 2018, 72, 235-246.
47. Kranz, P.; Neumann, F.; Wolf, A.; Classen, F.; Pompsch, M.; Ocklenburg, T.; Baumann, J.; Janke, K.; Baumann, M.; Goe-pelt, K. PDI is an essential redox-sensitive activator of PERK during the unfolded protein response (UPR). Cell death & disease 2017, 8, e2986-e2986.