Physical and chemical characterisation of conventional and nano/emulsions: influence of vegetable oils from different originKampa, J., Frazier, R. ORCID: https://orcid.org/0000-0003-4313-0019 and Rodriguez-Garcia, J. ORCID: https://orcid.org/0000-0002-4986-3144 (2022) Physical and chemical characterisation of conventional and nano/emulsions: influence of vegetable oils from different origin. Foods, 11 (5). ISSN 2304-8158
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.3390/foods11050681 Abstract/SummaryThe processes of oil production play an important role in defining the final physical and chemical properties of vegetable oils, which have an influence on the formation and characteristics of emulsions. The objective of this work was to investigate the correlations between oil physical and chemical properties with the stability of conventional emulsions (d > 200 nm) and nanoemulsions (d < 200 nm). Five vegetable oils obtained from different production processes and with high proportion of unsaturated fatty acids were studied: extra virgin olive oil (EVOO), cold pressed rapeseed oil (CPRO), refined olive oil (OO), refined rapeseed oil (RO) and refined sunflower oil (SO) were used in this study. The results showed that the physicochemical stability of emulsion was affected by fatty acid composition, the presence of antioxidants, free fatty acids, and droplet size. There was a significant positive correlation (p < 0.05) between the fraction of unsaturated fatty acids and emulsion oxidative stability, which SO, OO and EVOO showed a significantly higher lipid oxidative stability compared to RO and CPRO emulsions. Nanoemulsions with a smaller droplet size showed better physical stability than conventional emulsions. However, there was not a significant correlation between the oxidative stability of emulsions, droplet size and antioxidant capacity of oils.
DownloadsDownloads per month over past year
References
1. Ebbesson, S.O.E.; Voruganti, V.S.; Higgins, P.B.; Fabsitz, R.R.; Ebbesson, L.O.; Laston, S.; Harris, W.S.; Kennish, J.; Umans, B.D.; Wang, H., et al. Fatty acids linked to cardiovascular mortality are associated with risk factors. International Journal of Circumpolar Health 2015, 74, 28055-28011, doi:10.3402/ijch.v74.28055.
2. Sun, Y.; Neelakantan, N.; Wu, Y.; Lote-Oke, R.; Pan, A.; van Dam, R.M. Palm oil consumption increases LDL cholesterol compared with vegetable oils low in saturated fat in a meta-analysis of clinical trials. Journal of Nutrition 2015, 145, 1549-1558, doi:10.3945/jn.115.210575.
3. Regulation, E. No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Eur. Comm. Off. J. Eur. Union 2011, 20, 168-213.
4. World Health Organization. Eliminating trans fats in Europe – A policy brief ( 2015). Availabe online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/publications/2015/eliminating-trans-fats-in-europe-a-policy-brief-2015 (accessed on 15 August 2018).
5. Gunstone, F. Oils and fats in the food industry; John Wiley & Sons: 2009; Vol. 6.
6. Hernandez, E.M.; Kamal-Eldin, A. Processing and nutrition of fats and oils; John Wiley & Sons: 2013.
7. McClements, D.J.; Decker, E.A. Lipid Oxidation in Oil‐in‐Water Emulsions: Impact of Molecular Environment on Chemical Reactions in Heterogeneous Food Systems. Journal of Food Science 2000, 65, 1270-1282, doi:10.1111/j.1365-2621.2000.tb10596.x.
8. McClements, D.J. Emulsion Stability. In Food emulsions: principles, practices, and techniques, 3 ed.; CRC press: London, 2016; pp. 289-382.
9. Różańska, M.B.; Kowalczewski, P.Ł.; Tomaszewska-Gras, J.; Dwiecki, K.; Mildner-Szkudlarz, S. Seed-Roasting Process Affects Oxidative Stability of Cold-Pressed Oils. Antioxidants 2019, 8, 313, doi:10.3390/antiox8080313.
10. Wijesundera, C.; Ceccato, C.; Fagan, P.; Shen, Z. Seed roasting improves the oxidative stability of canola (B. napus) and mustard (B. juncea) seed oils. European Journal of Lipid Science and Technology 2008, 110;101;, 360-367, doi:10.1002/ejlt.200700214.
11. Szydłowska‐Czerniak, A.; Karlovits, G.; Dianoczki, C.; Recseg, K.; Szłyk, E. Comparison of two analytical methods for assessing antioxidant capacity of rapeseed and olive oils. Journal of the American Oil Chemists' Society 2008, 85, 141-149.
12. Poyato, C.; Ansorena, D.; Navarro-Blasco, I.; Astiasarán, I. A novel approach to monitor the oxidation process of different types of heated oils by using chemometric tools. Food research international 2014, 57, 152-161, doi:10.1016/j.foodres.2014.01.033.
13. Bhatnagar, A.S.; Prasanth Kumar, P.K.; Hemavathy, J.; Gopala Krishna, A.G. Fatty Acid Composition, Oxidative Stability, and Radical Scavenging Activity of Vegetable Oil Blends with Coconut Oil. Journal of the American Oil Chemists' Society 2009, 86, 991-999, doi:10.1007/s11746-009-1435-y.
14. Elkin, R.G.; Kukorowski, A.N.; Ying, Y.; Harvatine, K.J. Dietary High‐Oleic Acid Soybean Oil Dose Dependently Attenuates Egg Yolk Content of n‐3 Polyunsaturated Fatty Acids in Laying Hens Fed Supplemental Flaxseed Oil. Lipids 2018, 53, 235-249, doi:10.1002/lipd.12016.
15. Stauffer, C.E. Fats and oils; Eagan Press: 1996.
16. O'brien, R.D. Fats and oils: formulating and processing for applications; CRC press: 2008.
17. Tuberoso, C.I.G.; Kowalczyk, A.; Sarritzu, E.; Cabras, P. Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chemistry 2007, 103, 1494-1501, doi:10.1016/j.foodchem.2006.08.014.
18. Janu, C.; Kumar, D.R.S.; Reshma, M.V.; Jayamurthy, P.; Sundaresan, A.; Nisha, P. Comparative Study on the Total Phenolic Content and Radical Scavenging Activity of Common Edible Vegetable Oils. Journal of Food Biochemistry 2014, 38, 38-49, doi:10.1111/jfbc.12023.
19. Jimenez-Alvarez, D.; Giuffrida, F.; Golay, P.A.; Cotting, C.; Lardeau, A.; Keely, B.J. Antioxidant activity of oregano, parsley, and olive mill wastewaters in bulk oils and oil-in-water emulsions enriched in fish oil. Journal of Agricultural and Food Chemistry 2008, 56, 7151-7159, doi:10.1021/jf801154r.
20. Psomiadou, E.; Tsimidou, M. Simultaneous HPLC Determination of Tocopherols, Carotenoids, and Chlorophylls for Monitoring Their Effect on Virgin Olive Oil Oxidation. Journal of Agricultural and Food Chemistry 1998, 46, 5132-5138, doi:10.1021/jf980250n.
21. Karabulut, I.; Topcu, A.; Yorulmaz, A.; Tekin, A.; Ozay, D.S. Effects of the industrial refining process on some properties of hazelnut oil. European Journal of Lipid Science and Technology 2005, 107, 476-480, doi:10.1002/ejlt.200501147.
22. Costa, J.; Amaral, J.S.; Mafra, I.; Oliveira, M.B.P.P. Refining of Roundup Ready® soya bean oil: Effect on the fatty acid, phytosterol and tocopherol profiles. European Journal of Lipid Science and Technology 2011, 113, 528-535, doi:doi:10.1002/ejlt.201000385.
23. Gutiérrez-Luna, K.; Astiasarán, I.; Ansorena, D. Gels as fat replacers in bakery products: A review. Critical Reviews in Food Science and Nutrition 2020, 1-14.
24. Rogers, M.A. Novel structuring strategies for unsaturated fats–Meeting the zero-trans, zero-saturated fat challenge: A review. Food Research International 2009, 42, 747-753.
25. Espert, M.; Sanz, T.; Salvador, A. Development of Structured Sunflower Oil Systems for Decreasing Trans and Saturated Fatty Acid Content in Bakery Creams. Foods 2021, 10, 505, doi:10.3390/foods10030505.
26. Nieto, G.; Lorenzo, J.M. Use of olive oil as fat replacer in meat emulsions. Current Opinion in Food Science 2021.
27. Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry 2012, 132, 1221-1229, doi:10.1016/j.foodchem.2011.11.091.
28. Hategekimana, J.; Chamba, M.V.M.; Shoemaker, C.F.; Majeed, H.; Zhong, F. Vitamin E nanoemulsions by emulsion phase inversion: Effect of environmental stress and long-term storage on stability and degradation in different carrier oil types. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 483, 70-80, doi:10.1016/j.colsurfa.2015.03.020.
29. Öztürk, B. Nanoemulsions for food fortification with lipophilic vitamins: Production challenges, stability, and bioavailability: Nanoemulsion delivery systems for lipophilic vitamins. European Journal of Lipid Science and Technology 2017, 119, 1500539, doi:10.1002/ejlt.201500539.
30. Chan, S.W.; Mirhosseini, H.; Taip, F.S.; Ling, T.C.; Tan, C.P. Stability of CoQ10-Loaded Oil-in-Water (O/W) Emulsion: Effect of Carrier Oil and Emulsifier Type. Food Biophysics 2013, 8, 273-281, doi:10.1007/s11483-013-9300-9.
31. Sahafi, S.M.; Goli, S.A.H.; Kadivar, M.; Varshosaz, J. Preparation and characterization of bioactive oils nanoemulsions: Effect of oil unsaturation degree, emulsifier type and concentration. Journal of dispersion science and technology 2018, 39, 676-686, doi:10.1080/01932691.2017.1381919.
32. Vasilean, I.; Aprodu, I.; Vasilean, I.; Patrașcu, L.; Universitatea Dunarea de Jos, F.d.S.s.I.A.S.D.N.R.O.G.R.l.p.u.r.; Universitatea Dunarea de Jos, F.d.S.s.I.A.S.D.N.R.O.G.R. Pulse flour based emulsions - The effect of oil type on technological and functional characteristics. Studia Universitatis Babes-Bolyai Chemia 2018, 63, 199-214, doi:10.24193/subbchem.2018.1.15.
33. Komaiko, J.S.; McClements, D.J. Formation of Food‐Grade Nanoemulsions Using Low‐Energy Preparation Methods: A Review of Available Methods. Comprehensive Reviews in Food Science and Food Safety 2016, 15, 331-352, doi:10.1111/1541-4337.12189.
34. Kim, S.O.; Ha, T.V.A.; Choi, Y.J.; Ko, S. Optimization of Homogenization–Evaporation Process for Lycopene Nanoemulsion Production and Its Beverage Applications. Journal of Food Science 2014, 79, N1604-N1610, doi:10.1111/1750-3841.12472.
35. Yi, J.; Li, Y.; Zhong, F.; Yokoyama, W. The physicochemical stability and in vitro bioaccessibility of beta-carotene in oil-in-water sodium caseinate emulsions. Food Hydrocolloids 2014, 35, 19-27.
36. Salvia-Trujillo, L.; McClements, D.J. Influence of Nanoemulsion Addition on the Stability of Conventional Emulsions. Food biophysics 2015, 11, 1-9, doi:10.1007/s11483-015-9401-8.
37. Pathakoti, K.; Manubolu, M.; Hwang, H.-M. Nanostructures: Current uses and future applications in food science. Journal of Food and Drug Analysis 2017, 25, 245-253, doi:10.1016/j.jfda.2017.02.004.
38. McClements, D.J. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 2011, 7, 2297-2316, doi:10.1039/c0sm00549e.
39. Arancibia, C.; Navarro-Lisboa, R.; Zúñiga, R.N.; Matiacevich, S. Application of CMC as thickener on nanoemulsions based on olive oil: Physical properties and stability. International Journal of Polymer Science 2016, 2016, 1-10, doi:10.1155/2016/6280581.
40. Taha, A.; Hu, T.; Hu, H.; Zhang, Z.; Bakry, A.M.; Khalifa, I.; Pan, S. Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate. Ultrasonics - Sonochemistry 2018, 49, 283-293, doi:10.1016/j.ultsonch.2018.08.020.
41. AOAC. AOAC Official Method 969.33 Fatty Acids in Oils and Fats. 2000.
42. Nhu-Trang, T.-T.; Casabianca, H.; Grenier-Loustalot, M.-F. Authenticity control of essential oils containing citronellal and citral by chiral and stable-isotope gas-chromatographic analysis. Analytical and Bioanalytical Chemistry 2006, 386, 2141-2152, doi:10.1007/s00216-006-0842-2.
43. Lee, S.Y.; Fu, S.Y.; Chong, G.H. Ultrasound‐assisted extraction kinetics, fatty acid profile, total phenolic content and antioxidant activity of green solvents' extracted passion fruit oil. International Journal of Food Science & Technology 2015, 50, 1831-1838, doi:10.1111/ijfs.12844.
44. Commission Regulation (EEC). On the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis EEC No 2568/91. OJEU N° L 248 1991.
45. Martins, P.F.; Ito, V.M.; Batistella, C.B.; Maciel, M.R.W. Free fatty acid separation from vegetable oil deodorizer distillate using molecular distillation process. Separation and Purification Technology 2006, 48, 78-84, doi:10.1016/j.seppur.2005.07.028.
46. Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology 2011, 48, 412-422, doi:10.1007/s13197-011-0251-1.
47. Mraihi, F.; Journi, M.; Chérif, J.K.; Trabelsi-Ayadi, M. Characterization of threeNigella SativaL. Crude Oil Species, Measures of their Antioxidant Activity by DPPH. Journal of Biologically Active Products from Nature 2013, 3, 208-215, doi:10.1080/22297928.2013.797630.
48. Qiu, C.; Zhao, M.; Decker, E.A.; McClements, D.J. Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: Gliadin, caseinate, and whey protein. Food Chemistry 2015, 175, 249-257, doi:10.1016/j.foodchem.2014.11.112.
49. Sharif, H.R.; Goff, H.D.; Majeed, H.; Liu, F.; Nsor-Atindana, J.; Haider, J.; Liang, R.; Zhong, F. Physicochemical stability of β-carotene and α-tocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 529, 550-559, doi:10.1016/j.colsurfa.2017.05.076.
50. Guerra-Rosas, M.I.; Morales-Castro, J.; Ochoa-Martínez, L.A.; Salvia-Trujillo, L.; Martín-Belloso, O. Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids 2016, 52, 438-446, doi:10.1016/j.foodhyd.2015.07.017.
51. Raval, N.; Maheshwari, R.; Kalyane, D.; Youngren-Ortiz, S.R.; Chougule, M.B.; Tekade, R.K. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In Basic Fundamentals of Drug Delivery, 2018; 10.1016/B978-0-12-817909-3.00010-8pp. 369-400.
52. Granato, D.; De Castro, I.A.; Ellendersen, L.S.N.; Masson, M.L. Physical Stability Assessment and Sensory Optimization of a Dairy‐Free Emulsion Using Response Surface Methodology. Journal of food science 2010, 75, S149-S155, doi:10.1111/j.1750-3841.2010.01514.x.
53. Tadros, T.; Izquierdo, R.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science 2004, 108, 303-318, doi:10.1016/j.cis.2003.10.023.
54. Sabliov, C.; Chen, H.; Yada, R. Nanotechnology and functional foods: effective delivery of bioactive ingredients; WILEY: Somerset, 2015; 10.1002/9781118462157.
55. Liu, W.; Sun, D.; Li, C.; Liu, Q.; Xu, J. Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. Journal of colloid and interface science 2006, 303, 557-563.
56. Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Advances in colloid and interface science 2004, 108-109, 303-318, doi:10.1016/j.cis.2003.10.023.
57. Lochhead, R. Basic Physical Sciences for the Formulation of Cosmetic Products. Cosmetic Science and Technology: Theoretical Principles and Applications. Elsevier Inc 2017, 39-76.
58. Joung, H.J.; Choi, M.J.; Kim, J.T.; Park, S.H.; Park, H.J.; Shin, G.H. Development of Food‐Grade Curcumin Nanoemulsion and its Potential Application to Food Beverage System: Antioxidant Property and In Vitro Digestion. Journal of Food Science 2016, 81, N745-N753, doi:10.1111/1750-3841.13224.
59. Mehmood, T.; Ahmad, A.; Ahmed, Z.; Ahmed, A. Optimization of olive oil based O/W nanoemulsions prepared through ultrasonic homogenization: A response surface methodology approach. Food Chemistry 2017, 229, 790-796, doi:10.1016/j.foodchem.2017.03.023.
60. Nourbehesht, N.; Shekarchizadeh, H.; Soltanizadeh, N. Investigation of stability, consistency, and oil oxidation of emulsion filled gel prepared by inulin and rice bran oil using ultrasonic radiation. Ultrasonics - Sonochemistry 2018, 42, 585-593, doi:10.1016/j.ultsonch.2017.12.029.
61. Klang, V.; Valenta, C. Lecithin-based nanoemulsions. Journal of Drug Delivery Science and Technology 2011, 21, 55-76, doi:10.1016/S1773-2247(11)50006-1.
62. Jafari, S.M.; He, Y.; Bhandari, B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering 2007, 82, 478-488.
63. Fathordoobady, F.; Sannikova, N.; Guo, Y.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Comparing microfluidics and ultrasonication as formulation methods for developing hempseed oil nanoemulsions for oral delivery applications. Scientific reports 2021, 11, 72-72, doi:10.1038/s41598-020-79161-w.
64. Orafidiya, L.O.; Oladimeji, F.A. Determination of the required HLB values of some essential oils. International journal of pharmaceutics 2002, 237, 241-249, doi:10.1016/S0378-5173(02)00051-0.
65. Hong, I.K.; Kim, S.I.; Lee, S.B. Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of industrial and engineering chemistry (Seoul, Korea) 2018, 67, 123-131, doi:10.1016/j.jiec.2018.06.022.
66. Schmidts, T.; Dobler, D.; Guldan, A.-C.; Paulus, N.; Runkel, F. Multiple W/O/W emulsions—Using the required HLB for emulsifier evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 372, 48-54.
67. Hauss, D.J. Oral lipid-based formulations: enhancing the bioavailability of poorly water-soluble drugs; CRC Press: 2007; Vol. 170.
68. Niczinger, N.A.; Kállai-Szabó, B.; Lengyel, M.; Gordon, P.; Klebovich, I.; Antal, I. Physicochemical analysis in the evaluation of reconstituted dry emulsion tablets. Journal of pharmaceutical and biomedical analysis 2017, 134, 86-93, doi:10.1016/j.jpba.2016.11.031.
69. Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for Food Applications: Development and Characterization. Food and Bioprocess Technology 2012, 5, 854-867, doi:10.1007/s11947-011-0683-7.
70. Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.-E.; Benoit, J.-P. Physico-chemical stability of colloidal lipid particles. Elsevier Ltd: OXFORD, 2003; Vol. 24, pp 4283-4300.
71. Yang, Y.; Leser, M.E.; Sher, A.A.; McClements, D.J. Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®). Food Hydrocolloids 2013, 30, 589-596, doi:10.1016/j.foodhyd.2012.08.008.
72. McClements, D.J. Colloidal basis of emulsion color. Current Opinion in Colloid & Interface Science 2002, 7, 451-455, doi:10.1016/S1359-0294(02)00075-4.
73. Moyano, M.J.; Heredia, F.J.; Meléndez-Martínez, A.J. The Color of Olive Oils: The Pigments and Their Likely Health Benefits and Visual and Instrumental Methods of Analysis. Comprehensive Reviews in Food Science and Food Safety 2010, 9, 278-291, doi:10.1111/j.1541-4337.2010.00109.x.
74. Chanamai, R.; McClements, D.J. Prediction of emulsion color from droplet characteristics: dilute monodisperse oil-in-water emulsions. Food Hydrocolloids 2001, 15, 83-91, doi:10.1016/S0268-005X(00)00055-2.
75. Ghazani, S.M.; García-Llatas, G.; Marangoni, A.G. Minor Constituents in Canola Oil Processed by Traditional and Minimal Refining Methods. Journal of the American Oil Chemists' Society 2013, 90, 743-756, doi:10.1007/s11746-013-2215-2.
76. Qian, C.; McClements, D.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocolloids 2011, 25, 1000-1008, doi:10.1016/j.foodhyd.2010.09.017.
77. McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science 2018, 251, 55-79, doi:10.1016/j.cis.2017.12.001.
78. Zarena, A.; Bhattacharya, S.; Kadimi, U.S. Mangosteen oil-in-water emulsions: rheology, creaming, and microstructural characteristics during storage. Food and Bioprocess Technology 2012, 5, 3007-3013.
79. Sobhaninia, M.; Nasirpour, A.; Shahedi, M.; Golkar, A. Oil-in-water emulsions stabilized by whey protein aggregates: Effect of aggregate size, pH of aggregation and emulsion pH. Journal of Dispersion Science and Technology 2017, 38, 1366-1373.
80. Esteban, B.; Riba, J.-R.; Baquero, G.; Rius, A.; Puig, R. Temperature dependence of density and viscosity of vegetable oils. Biomass and bioenergy 2012, 42, 164-171.
81. Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Comprehensive reviews in food science and food safety 2006, 5, 169-186.
82. Kiokias, S.N.; Dimakou, C.P.; Tsaprouni, I.V.; Oreopoulou, V. Effect of Compositional Factors against the Thermal Oxidative Deterioration of Novel Food Emulsions. Food Biophysics 2006, 1, 115-123, doi:10.1007/s11483-006-9015-2.
83. Gunstone, F. Vegetable oils in food technology: composition, properties and uses; John Wiley & Sons: 2011.
84. Frega, N.; Mozzon, M.; Lercker, G. Effects of free fatty acids on oxidative stability of vegetable oil. Journal of the American Oil Chemists' Society 1999, 76, 325-329, doi:10.1007/s11746-999-0239-4.
85. Floury, J.; Desrumaux, A.; Lardières, J. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innovative Food Science and Emerging Technologies 2000, 1, 127-134, doi:10.1016/S1466-8564(00)00012-6.
86. Gohtani, S.; Sirendi, M.; Yamamoto, N.; Kajikawa, K.; Yamano, Y. EFFECT OF DROPLET SIZE ON OXIDATION OF DOCOSAHEXAENOIC ACID IN EMULSION SYSTEM. Journal of Dispersion Science and Technology 1999, 20, 1319-1325, doi:10.1080/01932699908943855.
87. Chantrapornchai, W.; Clydesdale, F.; McClements, D.J. Influence of Droplet Size and Concentration on the Color of Oil-in-Water Emulsions. Journal of agricultural and food chemistry 1998, 46, 2914-2920, doi:10.1021/jf980278z.
88. Bueschelberger, H.G.; Tirok, S.; Stoffels, I.; Schoeppe, A. Lecithins; John Wiley & Sons, Ltd: Chichester, UK, 2004; pp. 21-60. University Staff: Request a correction | Centaur Editors: Update this record |