1. Komaiko JS, McClements DJ (2016) Formation of Food‐Grade Nanoemulsions Using Low‐Energy Preparation Methods: A Review of Available Methods. Comprehensive Reviews in Food Science and Food Safety 15:331-352. https://doi: 10.1111/1541-4337.12189
2. Pathakoti K, Manubolu M, Hwang H-M (2017) Nanostructures: Current uses and future applications in food science. Journal of Food and Drug Analysis 25:245-253. https://doi: 10.1016/j.jfda.2017.02.004
3. Calligaris S, Plazzotta S, Bot F, Grasselli S, Malchiodi A, Anese M (2016) Nanoemulsion preparation by combining high pressure homogenization and high power ultrasound at low energy densities. Food Research International 83:25-30. https://doi: 10.1016/j.foodres.2016.01.033
4. Mehmood T (2015) Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology. Food Chemistry 183:1-7. https://doi: 10.1016/j.foodchem.2015.03.021
5. Qian C, McClements DJ (2011) Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocolloids 25:1000-1008. https://doi: 10.1016/j.foodhyd.2010.09.017
6. Szydłowska‐Czerniak A, Karlovits G, Dianoczki C, Recseg K, Szłyk E (2008) Comparison of two analytical methods for assessing antioxidant capacity of rapeseed and olive oils. Journal of the American Oil Chemists' Society 85:141-149
7. Poyato C, Ansorena D, Navarro-Blasco I, Astiasarán I (2014) A novel approach to monitor the oxidation process of different types of heated oils by using chemometric tools. Food research international 57:152-161. https://doi: 10.1016/j.foodres.2014.01.033
8. Tuberoso CIG, Kowalczyk A, Sarritzu E, Cabras P (2007) Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chemistry 103:1494-1501. https://doi: 10.1016/j.foodchem.2006.08.014
9. Bhatnagar AS, Prasanth Kumar PK, Hemavathy J, Gopala Krishna AG (2009) Fatty Acid Composition, Oxidative Stability, and Radical Scavenging Activity of Vegetable Oil Blends with Coconut Oil. Journal of the American Oil Chemists' Society 86:991-999. https://doi: 10.1007/s11746-009-1435-y
10. Guerra-Rosas MI, Morales-Castro J, Ochoa-Martínez LA, Salvia-Trujillo L, Martín-Belloso O (2016) Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids 52:438-446. https://doi: 10.1016/j.foodhyd.2015.07.017
11. Sharif HR, Goff HD, Majeed H, Liu F, Nsor-Atindana J, Haider J, Liang R, Zhong F (2017) Physicochemical stability of β-carotene and α-tocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 529:550-559. https://doi: 10.1016/j.colsurfa.2017.05.076
12. Karbstein H, Schubert H (1995) Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chemical Engineering & Processing: Process Intensification 34:205-211. https://doi: 10.1016/0255-2701(94)04005-2
13. Donsì F, Sessa M, Ferrari G (2012) Effect of emulsifier type and disruption chamber geometry on the fabrication of food nanoemulsions by high pressure homogenization. Industrial and Engineering Chemistry Research 51:7606-7618. https://doi: 10.1021/ie2017898
14. Cottrell T, Peij Jv (2014) Sorbitan Esters and Polysorbates. In. John Wiley & Sons, Ltd, Chichester, UK. pp. 271-296.
15. Goindi S, Kaur A, Kaur R, Kalra A, Chauhan P (2016) Nanoemulsions: an emerging technology in the food industry. In: Emulsions. Elsevier. pp. 651-688.
16. Klang V, Valenta C (2011) Lecithin-based nanoemulsions. Journal of Drug Delivery Science and Technology 21:55-76. https://doi: 10.1016/S1773-2247(11)50006-1
17. Bueschelberger HG (2004) Lecithins. Emulsifiers in food technology 2
18. McClements DJ (2016) Emulsion ingredients. In: McClements DJ (ed) Food emulsions: principles, practices, and techniques. CRC press.
19. Öztürk B (2017) Nanoemulsions for food fortification with lipophilic vitamins: Production challenges, stability, and bioavailability: Nanoemulsion delivery systems for lipophilic vitamins. European Journal of Lipid Science and Technology 119:1500539. https://doi: 10.1002/ejlt.201500539
20. McClements DJ (2011) Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7:2297-2316. https://doi: 10.1039/c0sm00549e
21. Galvão KCS, Vicente AA, Sobral PJA (2018) Development, Characterization, and Stability of O/W Pepper Nanoemulsions Produced by High-Pressure Homogenization. Food and Bioprocess Technology 11:355-367. https://doi: 10.1007/s11947-017-2016-y
22. El Kinawy OS, Petersen S, Ulrich J (2012) Technological Aspects of Nanoemulsion Formation of Low-Fat Foods Enriched with Vitamin E by High-Pressure Homogenization. Chemical Engineering and Technology 35:937-940. https://doi: 10.1002/ceat.201100608
23. Yuan Y, Gao Y, Zhao J, Mao L (2008) Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International 41:61-68. https://doi: 10.1016/j.foodres.2007.09.006
24. Qian C, Decker EA, Xiao H, McClements DJ (2012) Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry 132:1221-1229. https://doi: 10.1016/j.foodchem.2011.11.091
25. Kim S-H, Ji Y-S, Lee E-S, Hong S-T (2016) Ostwald Ripening Stability of Curcumin-Loaded MCT Nanoemulsion: Influence of Various Emulsifiers. Preventive nutrition and food science 21:289-295. https://doi: 10.3746/pnf.2016.21.3.289
26. McClements DJ, Decker EA (2000) Lipid Oxidation in Oil‐in‐Water Emulsions: Impact of Molecular Environment on Chemical Reactions in Heterogeneous Food Systems. Journal of Food Science 65:1270-1282. https://doi: 10.1111/j.1365-2621.2000.tb10596.x
27. Fomuso LB, Corredig M, Akoh CC (2002) Effect of Emulsifier on Oxidation Properties of Fish Oil-Based Structured Lipid Emulsions. Journal of Agricultural and Food Chemistry 50:2957-2961. https://doi: 10.1021/jf011229g
28. Uluata S, McClements DJ, Decker EA (2015) Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants. Journal of agricultural and food chemistry 63:9333-9340. https://doi: 10.1021/acs.jafc.5b03572
29. Arancibia C, Riquelme N, Zúñiga R, Matiacevich S (2017) Comparing the effectiveness of natural and synthetic emulsifiers on oxidative and physical stability of avocado oil-based nanoemulsions. Innovative Food Science and Emerging Technologies 44:159-166. https://doi: 10.1016/j.ifset.2017.06.009
30. National Center for Biotechnology Information (2021) PubChem Compound Summary for CID 443314, Polysorbate 20. In.
31. National Center for Biotechnology Information (2021) PubChem Compound Summary for CID 57369748, Lecithin from Soybean. In.
32. Arancibia C, Navarro-Lisboa R, Zúñiga RN, Matiacevich S (2016) Application of CMC as thickener on nanoemulsions based on olive oil: Physical properties and stability. International Journal of Polymer Science 2016:1-10. https://doi: 10.1155/2016/6280581
33. Taha A, Hu T, Hu H, Zhang Z, Bakry AM, Khalifa I, Pan S (2018) Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate. Ultrasonics - Sonochemistry 49:283-293. https://doi: 10.1016/j.ultsonch.2018.08.020
34. Bai L, Huan S, Gu J, McClements DJ (2016) Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids 61:703-711. https://doi: 10.1016/j.foodhyd.2016.06.035
35. Luo X, Zhou Y, Bai L, Liu F, Zhang Z, Zhang R, Zheng B, Deng Y, McClements DJ (2017) Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and lecithin). Food Research International 96:103-112. https://doi: 10.1016/j.foodres.2017.03.013
36. Mukherjee I, Moulik SP, Rakshit AK (2013) Tensiometric determination of Gibbs surface excess and micelle point: A critical revisit. Journal of Colloid And Interface Science 394:329-336. https://doi: 10.1016/j.jcis.2012.12.004
37. El-Sukkary MMA, Syed NA, Aiad I, El-Azab WIM (2008) Synthesis and Characterization of some Alkyl Polyglycosides Surfactants. Journal of Surfactants and Detergents 11:129-137. https://doi: 10.1007/s11743-008-1063-9
38. Sahafi SM, Goli SAH, Kadivar M, Varshosaz J (2018) Preparation and characterization of bioactive oils nanoemulsions: Effect of oil unsaturation degree, emulsifier type and concentration. Journal of dispersion science and technology 39:676-686. https://doi: 10.1080/01932691.2017.1381919
39. Qiu C, Zhao M, Decker EA, McClements DJ (2015) Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: Gliadin, caseinate, and whey protein. Food Chemistry 175:249-257. https://doi: 10.1016/j.foodchem.2014.11.112
40. Floury J, Desrumaux A, Lardières J (2000) Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innovative Food Science and Emerging Technologies 1:127-134. https://doi: 10.1016/S1466-8564(00)00012-6
41. Gohtani S, Sirendi M, Yamamoto N, Kajikawa K, Yamano Y (1999) EFFECT OF DROPLET SIZE ON OXIDATION OF DOCOSAHEXAENOIC ACID IN EMULSION SYSTEM. Journal of Dispersion Science and Technology 20:1319-1325. https://doi: 10.1080/01932699908943855
42. Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids 22:1191-1202. https://doi: 10.1016/j.foodhyd.2007.09.006
43. Kronberg B, Holmberg K, Lindman B (2014) Surface chemistry of surfactants and polymers. John Wiley & Sons
44. Nash JJ, Erk KA (2017) Stability and interfacial viscoelasticity of oil-water nanoemulsions stabilized by soy lecithin and Tween 20 for the encapsulation of bioactive carvacrol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 517:1-11. https://doi: 10.1016/j.colsurfa.2016.12.056
45. Shchipunov YA (2001) Lecithin organogel: A micellar system with unique properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 183:541-554. https://doi: 10.1016/S0927-7757(01)00511-8
46. Pichot R, Watson RL, Norton IT (2013) Phospholipids at the interface: current trends and challenges. International journal of molecular sciences 14:11767-11794. https://doi: 10.3390/ijms140611767
47. Choe E, Min DB (2006) Mechanisms and factors for edible oil oxidation. Comprehensive reviews in food science and food safety 5:169-186
48. Lee SJ, Choi SJ, Li Y, Decker EA, McClements DJ (2011) Protein-Stabilized Nanoemulsions and Emulsions: Comparison of Physicochemical Stability, Lipid Oxidation, and Lipase Digestibility. Journal of Agricultural and Food Chemistry 59:415-427. https://doi: 10.1021/jf103511v
49. Lee L, Hancocks R, Noble I, Norton IT (2014) Production of water-in-oil nanoemulsions using high pressure homogenisation: A study on droplet break-up. Journal of Food Engineering 131:33-37. https://doi: 10.1016/j.jfoodeng.2014.01.024
50. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Advances in colloid and interface science 108-109:303-318. https://doi: 10.1016/j.cis.2003.10.023
51. Jafari SM, He Y, Bhandari B (2006) Optimization of nano-emulsions production by microfluidization. European food research & technology 225:733-741. https://doi: 10.1007/s00217-006-0476-9
52. Ruiz-Montañez G, Ragazzo-Sanchez JA, Picart-Palmade L, Calderón-Santoyo M, Chevalier-Lucia D (2017) Optimization of nanoemulsions processed by high-pressure homogenization to protect a bioactive extract of jackfruit (Artocarpus heterophyllus Lam). Innovative Food Science and Emerging Technologies 40:35-41. https://doi: 10.1016/j.ifset.2016.10.020
53. Sadeghpour Galooyak S, Sadeghpour Galooyak S, Dabir B, Dabir B (2015) Three-factor response surface optimization of nano-emulsion formation using a microfluidizer. Journal of food science and technology 52:2558-2571. https://doi: 10.1007/s13197-014-1363-1