Abuaf, A. F., Bunting, S. R., Klein, S., Carroll, T., Carpenter-Thompson, J., Javed, A., & Cipriani, V. (2022). Analysis of the extent of limbic system changes in multiple sclerosis using FreeSurfer and voxel-based morphometry approaches. PLOS ONE, 17(9), e0274778. https://doi.org/10.1371/journal.pone.0274778
Aggleton, J. P., Pralus, A., Nelson, A. J. D., & Hornberger, M. (2016). Thalamic pathology and memory loss in early Alzheimer’s disease: Moving the focus from the medial temporal lobe to Papez circuit. Brain, 139(7), 1877–1890. https://doi.org/10.1093/brain/aww083
Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41. https://doi.org/10.1016/j.media.2007.06.004
Behrens, T. E. J., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. a. M., Boulby, P. A., Barker, G. J., Sillery, E. L., Sheehan, K., Ciccarelli, O., Thompson, A. J., Brady, J. M., & Matthews, P. M. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7), Article 7. https://doi.org/10.1038/nn1075
Bernstein, A. S., Rapcsak, S. Z., Hornberger, M., Saranathan, M., & Initiative, the A. D. N. (2021). Structural Changes in Thalamic Nuclei Across Prodromal and Clinical Alzheimer’s Disease. Journal of Alzheimer’s Disease, 82(1), 361–371. https://doi.org/10.3233/JAD-201583
Boeken, O. J., Cieslik, E. C., Langner, R., & Markett, S. (2022). Characterizing functional modules in the human thalamus: Coactivation-based parcellation and systems-level functional decoding. Brain Structure and Function. https://doi.org/10.1007/s00429-022-02603-w
Bonham, L. W., Geier, E. G., Sirkis, D. W., Leong, J. K., Ramos, E. M., Wang, Q., Karydas, A., Lee, S. E., Sturm, V. E., Sawyer, R. P., Friedberg, A., Ichida, J. K., Gitler, A. D., Sugrue, L., Cordingley, M., Bee, W., Weber, E., Kramer, J. H., Rankin, K. P., … Yokoyama, J. S. (2023). Radiogenomics of C9orf72 Expansion Carriers Reveals Global Transposable Element Derepression and Enables Prediction of Thalamic Atrophy and Clinical Impairment. Journal of Neuroscience, 43(2), 333–345. https://doi.org/10.1523/JNEUROSCI.1448-22.2022
Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., Orr, C. A., Wager, T. D., Banich, M. T., Speer, N. K., Sutherland, M. T., Riedel, M. C., Dick, A. S., Bjork, J. M., Thomas, K. M., … Dale, A. M. (2018). The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 43–54. https://doi.org/10.1016/j.dcn.2018.03.001
Chakraborty, S., Kolling, N., Walton, M. E., & Mitchell, A. S. (2016). Critical role for the mediodorsal thalamus in permitting rapid reward-guided updating in stochastic reward environments. ELife, 5, e13588. https://doi.org/10.7554/eLife.13588
Datta, R., Bacchus, M. K., Kumar, D., Elliott, M. A., Rao, A., Dolui, S., Reddy, R., Banwell, B. L., & Saranathan, M. (2021). Fast automatic segmentation of thalamic nuclei from MP2RAGE acquisition at 7 Tesla. Magnetic Resonance in Medicine, 85(5), 2781–2790. https://doi.org/10.1002/mrm.28608
DeNicola, A. L., Park, M.-Y., Crowe, D. A., MacDonald, A. W., & Chafee, M. V. (2020). Differential Roles of Mediodorsal Nucleus of the Thalamus and Prefrontal Cortex in Decision-Making and State Representation in a Cognitive Control Task Measuring Deficits in Schizophrenia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40(8), 1650–1667. https://doi.org/10.1523/JNEUROSCI.1703-19.2020
Elvsåshagen, T., Shadrin, A., Frei, O., van der Meer, D., Bahrami, S., Kumar, V. J., Smeland, O., Westlye, L. T., Andreassen, O. A., & Kaufmann, T. (2021). The genetic architecture of the human thalamus and its overlap with ten common brain disorders. Nature Communications, 12(1), Article 1. https://doi.org/10.1038/s41467-021-23175-z
Forno, G., Saranathan, M., Contador, J., Guillen, N., Falgàs, N., Tort-Merino, A., Balasa, M., Sanchez-Valle, R., Hornberger, M., & Lladó, A. (2023). Thalamic nuclei changes in early and late onset Alzheimer’s disease. Current Research in Neurobiology, 4, 100084. https://doi.org/10.1016/j.crneur.2023.100084
Fu, Z., Tu, Y., Di, X., Du, Y., Sui, J., Biswal, B. B., Zhang, Z., de Lacy, N., & Calhoun, V. D. (2019). Transient increased thalamic-sensory connectivity and decreased whole-brain dynamism in autism. NeuroImage, 190, 191–204. https://doi.org/10.1016/j.neuroimage.2018.06.003
Fujita, N., Tanaka, H., Takanashi, M., Hirabuki, N., Abe, K., Yoshimura, H., & Nakamura, H. (2001). Lateral geniculate nucleus: Anatomic and functional identification by use of MR imaging. American Journal of Neuroradiology, 22(9), 1719–1726. Scopus.
Giraldo-Chica, M., Rogers, B. P., Damon, S. M., Landman, B. A., & Woodward, N. D. (2018). Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia. Biological Psychiatry, 83(6), 509–517. https://doi.org/10.1016/j.biopsych.2017.09.022
Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., & Jenkinson, M. (2013). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127
Greene, D. J., Marek, S., Gordon, E. M., Siegel, J. S., Gratton, C., Laumann, T. O., Gilmore, A. W., Berg, J. J., Nguyen, A. L., Dierker, D., Van, A. N., Ortega, M., Newbold, D. J., Hampton, J. M., Nielsen, A. N., McDermott, K. B., Roland, J. L., Norris, S. A., Nelson, S. M., … Dosenbach, N. U. F. (2020). Integrative and Network-Specific Connectivity of the Basal Ganglia and Thalamus Defined in Individuals. Neuron, 105(4), 742-758.e6. https://doi.org/10.1016/j.neuron.2019.11.012
Gringel, T., Schulz-Schaeffer, W., Elolf, E., Frölich, A., Dechent, P., & Helms, G. (2009). Optimized high-resolution mapping of magnetization transfer (MT) at 3 Tesla for direct visualization of substructures of the human thalamus in clinically feasible measurement time. Journal of Magnetic Resonance Imaging, 29(6), 1285–1292. https://doi.org/10.1002/jmri.21756
Iglehart, C., Monti, M., Cain, J., Tourdias, T., & Saranathan, M. (2020). A systematic comparison of structural-, structural connectivity-, and functional connectivity-based thalamus parcellation techniques. Brain Structure and Function, 225(5), 1631–1642. https://doi.org/10.1007/s00429-020-02085-8
Iglesias, J. E., Insausti, R., Lerma-Usabiaga, G., Bocchetta, M., Van Leemput, K., Greve, D. N., van der Kouwe, A., Fischl, B., Caballero-Gaudes, C., & Paz-Alonso, P. M. (2018). A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. NeuroImage, 183, 314–326. https://doi.org/10.1016/j.neuroimage.2018.08.012
Johansen-Berg, H., Behrens, T. E. J., Sillery, E., Ciccarelli, O., Thompson, A. J., Smith, S. M., & Matthews, P. M. (2005). Functional–Anatomical Validation and Individual Variation of Diffusion Tractography-based Segmentation of the Human Thalamus. Cerebral Cortex, 15(1), 31–39. https://doi.org/10.1093/cercor/bhh105
Jones, E. G. (2012). The Thalamus. Springer Science & Business Media.
Kim, D.-J., Park, B., & Park, H.-J. (2013). Functional connectivity-based identification of subdivisions of the basal ganglia and thalamus using multilevel independent component analysis of resting state fMRI. Human Brain Mapping, 34(6), 1371–1385. https://doi.org/10.1002/hbm.21517
Krauth, A., Blanc, R., Poveda, A., Jeanmonod, D., Morel, A., & Székely, G. (2010). A mean three-dimensional atlas of the human thalamus: Generation from multiple histological data. NeuroImage, 49(3), 2053–2062. https://doi.org/10.1016/j.neuroimage.2009.10.042
Kumar, V. J., van Oort, E., Scheffler, K., Beckmann, C. F., & Grodd, W. (2017). Functional anatomy of the human thalamus at rest. NeuroImage, 147, 678–691. https://doi.org/10.1016/j.neuroimage.2016.12.071
Liebermann, D., Ploner, C. J., Kraft, A., Kopp, U. A., & Ostendorf, F. (2013). A dysexecutive syndrome of the medial thalamus. Cortex, 49(1), 40–49. https://doi.org/10.1016/j.cortex.2011.11.005
Maximo, J. O., & Kana, R. K. (2019). Aberrant “deep connectivity” in autism: A cortico–subcortical functional connectivity magnetic resonance imaging study. Autism Research, 12(3), 384–400. https://doi.org/10.1002/aur.2058
Morel, A. (2007). Stereotactic Atlas of the Human Thalamus and Basal Ganglia. CRC Press.
Morel, A., Magnin, M., & Jeanmonod, D. (1997). Multiarchitectonic and stereotactic atlas of the human thalamus. Journal of Comparative Neurology, 387(4), 588–630. https://doi.org/10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-Z
Najdenovska, E., Alemán-Gómez, Y., Battistella, G., Descoteaux, M., Hagmann, P., Jacquemont, S., Maeder, P., Thiran, J.-P., Fornari, E., & Bach Cuadra, M. (2018). In-vivo probabilistic atlas of human thalamic nuclei based on diffusion- weighted magnetic resonance imaging. Scientific Data, 5(1), Article 1. https://doi.org/10.1038/sdata.2018.270
Pajula, J., Kauppi, J.-P., & Tohka, J. (2012). Inter-Subject Correlation in fMRI: Method Validation against Stimulus-Model Based Analysis. PLOS ONE, 7(8), e41196. https://doi.org/10.1371/journal.pone.0041196
Papathanasiou, A., Messinis, L., Zampakis, P., Panagiotakis, G., Gourzis, P., Georgiou, V., & Papathanasopoulos, P. (2015). Thalamic atrophy predicts cognitive impairment in relapsing remitting multiple sclerosis. Effect on instrumental activities of daily living and employment status. Journal of the Neurological Sciences, 358(1–2), 236–242. https://doi.org/10.1016/j.jns.2015.09.001
Pardilla-Delgado, E., Torrico-Teave, H., Sanchez, J. S., Ramirez-Gomez, L. A., Baena, A., Bocanegra, Y., Vila-Castelar, C., Fox-Fuller, J. T., Guzmán-Vélez, E., Martínez, J., Alvarez, S., Ochoa-Escudero, M., Lopera, F., & Quiroz, Y. T. (2021). Associations between subregional thalamic volume and brain pathology in autosomal dominant Alzheimer’s disease. Brain Communications, 3(2), fcab101. https://doi.org/10.1093/braincomms/fcab101
Setzer, B., Fultz, N. E., Gomez, D. E. P., Williams, S. D., Bonmassar, G., Polimeni, J. R., & Lewis, L. D. (2022). A temporal sequence of thalamic activity unfolds at transitions in behavioral arousal state. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-33010-8
Shao, Y., Wang, L., Ye, E., Jin, X., Ni, W., Yang, Y., Wen, B., Hu, D., & Yang, Z. (2013). Decreased Thalamocortical Functional Connectivity after 36 Hours of Total Sleep Deprivation: Evidence from Resting State fMRI. PLOS ONE, 8(10), e78830. https://doi.org/10.1371/journal.pone.0078830
Shine, J. M., Lewis, L. D., Garrett, D. D., & Hwang, K. (2023). The impact of the human thalamus on brain-wide information processing. Nature Reviews Neuroscience, 1–15. https://doi.org/10.1038/s41583-023-00701-0
Smith, Y., Galvan, A., Ellender, T. J., Doig, N., Villalba, R. M., Ocampo, I. H., Wichman, T., & Bolam, P. (2014). The thalamostriatal system in normal and diseased states. Frontiers in Systems Neuroscience, 8. https://doi.org/10.3389/fnsys.2014.00005
Su, J. H., Thomas, F. T., Kasoff, W. S., Tourdias, T., Choi, E. Y., Rutt, B. K., & Saranathan, M. (2019). Thalamus Optimized Multi Atlas Segmentation (THOMAS): Fast, fully automated segmentation of thalamic nuclei from structural MRI. NeuroImage, 194, 272–282. https://doi.org/10.1016/j.neuroimage.2019.03.021
Sudhyadhom, A., Haq, I. U., Foote, K. D., Okun, M. S., & Bova, F. J. (2009). A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: The Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). NeuroImage, 47, T44–T52. https://doi.org/10.1016/j.neuroimage.2009.04.018
Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, T., Peakman, T., & Collins, R. (2015). UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLOS Medicine, 12(3), e1001779. https://doi.org/10.1371/journal.pmed.1001779
Taha, A. A., & Hanbury, A. (2015). Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Medical Imaging, 15(1), 29. https://doi.org/10.1186/s12880-015-0068-x
Tourdias, T., Saranathan, M., Levesque, I. R., Su, J., & Rutt, B. K. (2014). Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T. NeuroImage, 84, 534–545. https://doi.org/10.1016/j.neuroimage.2013.08.069
Tregidgo, H. F. J., Soskic, S., Althonayan, J., Maffei, C., Van Leemput, K., Golland, P., Insausti, R., Lerma-Usabiaga, G., Caballero-Gaudes, C., Paz-Alonso, P. M., Yendiki, A., Alexander, D. C., Bocchetta, M., Rohrer, J. D., & Iglesias, J. E. (2023). Accurate Bayesian segmentation of thalamic nuclei using diffusion MRI and an improved histological atlas. NeuroImage, 274, 120129. https://doi.org/10.1016/j.neuroimage.2023.120129
Umapathy, L., Keerthivasan, M. B., Zahr, N. M., Bilgin, A., & Saranathan, M. (2022). Convolutional Neural Network Based Frameworks for Fast Automatic Segmentation of Thalamic Nuclei from Native and Synthesized Contrast Structural MRI. Neuroinformatics, 20(3), 651–664. https://doi.org/10.1007/s12021-021-09544-5
Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., & Ugurbil, K. (2013). The WU-Minn Human Connectome Project: An overview. NeuroImage, 80, 62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041
Vidal, J. P., Danet, L., Péran, P., Pariente, J., Cuadra, M. B., Zahr, N. M., Barbeau, E. J., & Saranathan, M. (2023). Robust thalamic nuclei segmentation from T1-weighted MRI (arXiv:2304.07167). arXiv. https://doi.org/10.48550/arXiv.2304.07167
Whiting, B. B., Whiting, A. C., & Whiting, D. M. (2018). Thalamic Deep Brain Stimulation. Current Concepts in Movement Disorder Management, 33, 198–206. https://doi.org/10.1159/000481104
Wiegell, M. R., Tuch, D. S., Larsson, H. B. W., & Wedeen, V. J. (2003). Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. NeuroImage, 19(2), 391–401. https://doi.org/10.1016/S1053-8119(03)00044-2
Williams, B., & Christakou, A. (2021). Cortical and thalamic influences on striatal involvement in instructed, serial reversal learning; implications for the organisation of flexible behaviour. bioRxiv.
Williams, B., Roesch, E., & Christakou, A. (2022). Systematic validation of an automated thalamic parcellation technique using anatomical data at 3T. NeuroImage, 258, 119340. https://doi.org/10.1016/j.neuroimage.2022.119340
Wolff, M., & Vann, S. D. (2019). The Cognitive Thalamus as a Gateway to Mental Representations. Journal of Neuroscience, 39(1), 3–14. https://doi.org/10.1523/JNEUROSCI.0479-18.2018
Yang, S., Meng, Y., Li, J., Li, B., Fan, Y.-S., Chen, H., & Liao, W. (2020). The thalamic functional gradient and its relationship to structural basis and cognitive relevance. NeuroImage, 218, 116960. https://doi.org/10.1016/j.neuroimage.2020.116960
Zahr, N. M., Sullivan, E. V., Pohl, K. M., Pfefferbaum, A., & Saranathan, M. (2020). Sensitivity of ventrolateral posterior thalamic nucleus to back pain in alcoholism and CD4 nadir in HIV. Human Brain Mapping, 41(5), 1351–1361. https://doi.org/10.1002/hbm.24880
Zhang, D., Snyder, A. Z., Fox, M. D., Sansbury, M. W., Shimony, J. S., & Raichle, M. E. (2008). Intrinsic Functional Relations Between Human Cerebral Cortex and Thalamus. Journal of Neurophysiology, 100(4), 1740–1748. https://doi.org/10.1152/jn.90463.2008