Tuning the self-assembly of the bioactive dipeptide L-carnosine by incorporation of a bulky aromatic substituent

[thumbnail of CarnosineLangmuirRevised.pdf]
Preview
Text
- Accepted Version

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Castelletto, V., Cheng, G., Greenland, B. W., Hamley, I. W. ORCID: https://orcid.org/0000-0002-4549-0926 and Harris, P. J. F. (2011) Tuning the self-assembly of the bioactive dipeptide L-carnosine by incorporation of a bulky aromatic substituent. Langmuir, 27 (6). pp. 2980-2988. ISSN 0743-7463 doi: 10.1021/la104495g

Abstract/Summary

The dipeptide L-carnosine has a number of important biological properties. Here, we explore the effect of attachment of a bulky hydrophobic aromatic unit, Fmoc [N-(fluorenyl-9-methoxycarbonyl)] on the self-assembly of Fmoc-L-carnosine, i.e., Fmoc-Beta-alanine-histidine (Fmoc-BetaAH). It is shown that Fmoc-BetaAH forms well-defined amyloid fibril containing Beta sheets above a critical aggregation concentration, which is determined from pyrene and ThT fluorescence experiments. Twisted fibrils were imaged by cryogenic transmission electron microscopy. The zinc-binding properties of Fmoc-BetaAH were investigated by FTIR and Raman spectroscopy since the formation of metal ion complexes with the histidine residue in carnosine is well-known, and important to its biological roles. Observed changes in the spectra may reflect differences in the packing of the Fmoc-dipeptides due to electrostatic interactions. Cryo-TEM shows that this leads to changes in the fibril morphology. Hydrogelation is also induced by addition of an appropriate concentration of zinc ions. Our work shows that the Fmoc motif can be employed to drive the self-assembly of carnosine into amyloid fibrils.

Altmetric Badge

Item Type Article
URI https://centaur.reading.ac.uk/id/eprint/19496
Identification Number/DOI 10.1021/la104495g
Refereed Yes
Divisions Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > Electron Microscopy Laboratory (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Publisher American Chemical Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record