Reshaping the contexts of online customer engagement behavior via artificial intelligence: a conceptual frameworkPerez Vega, R. ORCID: https://orcid.org/0000-0003-1619-317X, Kaartemo, V., Lages, C. R., Borghei Razavi, N. and Männistö, J. (2021) Reshaping the contexts of online customer engagement behavior via artificial intelligence: a conceptual framework. Journal of Business Research, 129. pp. 902-910. ISSN 0148-2963
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.jbusres.2020.11.002 Abstract/SummaryAs new applications of artificial intelligence continue to emerge, there is an increasing interest to explore how this type of technology can improve automated service interactions between the firm and its customers. This paper aims to develop a conceptual framework that details how firms and customers can enhance the outcomes of firm-solicited and firm-unsolicited online customer engagement behaviors through the use of information processing systems enabled by artificial intelligence. By building on the metaphor of artificial intelligence systems as organisms and taking a Stimulus-Organism-Response theory perspective, this paper identifies different types of firm-solicited and firm-unsolicited online customer engagement behaviors that act as stimuli for artificial intelligence organisms to process customer-related information resulting in both artificial intelligence and human responses which, in turn, shape the contexts of future online customer engagement behaviors.
DownloadsDownloads per month over past year
Akter, S., & Wamba, S. F. (2016). Big data analytics in E-commerce: a systematic review and agenda for future research. Electronic Markets, 26(2), 173–194.
Alexander, M. J., Jaakkola, E., & Hollebeek, L. D. (2018). Zooming out: actor engagement beyond the dyadic. Journal of Service Management, 29(3), 333–351.
Assaf, A. G., Josiassen, A., Cvelbar, L. K., & Woo, L. (2015). The effects of customer voice on hotel performance, International Journal of Hospitality Management, 44, 77–83.
Bauer, J., & Nanopoulos, A. (2014). Recommender systems based on quantitative implicit customer feedback. Decision Support Systems, 68, 77-88.
Beckers, S. F., van Doorn, J., & Verhoef, P. C. (2018). Good, better, engaged? The effect of company-initiated customer engagement behavior on shareholder value. Journal of the Academy of Marketing Science, 46(3), 366–383.
Bhuiyan, T., Xu, Y., & Josang, A. (2009, December). State-of-the-art review on opinion mining from online customers’ feedback. In Proceedings of the 9th Asia-Pacific Complex Systems Conference (pp. 385-390). Chuo University.
Bijmolt, T. H. A., Leeflang, P. S. H., Block, F., Eisenbeiss, M., Hardie, B. G. S., Lemmens, A., & Saffert, P. (2010). Analytics for customer engagement. Journal of Service Research, 13(3), 341–356. https://doi.org/10.1177/1094670510375603.
Bitner, M. J. (1992). Servicescapes: The impact of physical surroundings on customers and employees, Journal of Marketing, 57–71.
Bonnin, G. (2006). Physical environment and service experience: An appropriation-based model. Journal of Services Research, 6, 43–49.
Brodie, R. J., Hollebeek, L. D., Jurić, B., & Ilić, A. (2011). Customer engagement: Conceptual domain, fundamental propositions, and implications for research. Journal of Service Research, 14(3), 252–271.
Chau, M., & Xu, J. (2012). Business intelligence in blogs: Understanding consumer interactions and communities. MIS quarterly, 1189-1216.
Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: from big data to big impact. MIS Quarterly, 36(4), 1165–1188.
Chen, Y. C., Shang, R. A., & Kao, C. Y. (2009). The effects of information overload on consumers’ subjective state towards buying decision in the internet shopping environment. Electronic Commerce Research and Applications, 8(1), 48–58.
Cheng, H. T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., ... & Anil, R. (2016, September). Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems (7-10).
Chica, M., & Rand, W. (2017). Building agent-based decision support systems for word-of-mouth programs: a freemium application. Journal of Marketing Research, 54(5), 752–767.
Chiu, Y. B., Lin, C. P., & Tang, L. L. (2005). Gender differs: assessing a model of online purchase intentions in e-tail service. International Journal of Service Industry Management, 16(5), 416–435.
Choudhury, M. M., & Harrigan, P. (2014). CRM to social CRM: the integration of new technologies into customer relationship management. Journal of Strategic Marketing, 22(2), 149-176.
Culotta, A., Kumar, N. R., & Cutler, J. (2015, January). Predicting the demographics of Twitter users from website traffic data. Conference proceedings of the twenty-ninth AAAI Conference on Artificial Intelligence, Austin, Texas, 72–78.
Domingos, P. (2015). The master algorithm: How the quest for the ultimate learning machine will remake our world. London: Penguin.
Eroglu, S. A., Machleit, K. A., & Davis, L. M. (2001). Atmospheric qualities of online retailing: A conceptual model and implications. Journal of Business research, 54(2), 177-184.
Fagella, D. (2018). Artificial intelligence in marketing and advertising – 5 examples of real traction [Online]. https://www.techemergence.com/artificial-intelligence-in-marketing-and-advertising-5-examples-of-real-traction/ Accessed 25 October 2018.
Fill, C., & Turnbull, S. L. (2016). Marketing communications: brands, experiences and participation. London: Pearson.
Fortini-Campbell, L. (1992). The consumer insight workbook: How consumer insights can inspire better marketing and advertising. Journal of Consumer Marketing, 9(4), 73–74.
Fournier, S., & Lee, L. (2009). Getting brand communities right. Harvard Business Review, 87(4), 105–111.
Freitag, D. (2000). Machine learning for information extraction in informal domains. Machine Learning, 39(2–3), 169–202.
Fulgoni, G. M. (2014). Omni-channel retail insights and the consumer's path-to-purchase: How digital has transformed the way people make purchasing decisions. Journal of Advertising Research, 54(4), 377–380.
Gamberini, L., & Spagnolli, A. (2016). Towards a definition of symbiotic relations between humans and machines. In L. Gamberini, A. Spagnolli, G. Jacucci, B. Blankertz, & J. Freeman (Eds.), International Workshop on Symbiotic Interaction (pp. 1–4). Springer, Cham.
Greenberg, P. (2010). The impact of CRM 2.0 on customer insight. Journal of Business and Industrial Marketing, 25(6), 410–419.
Gummerus, J., Liljander, V., Weman, E., & Pihlström, M. (2012). Customer engagement in a Facebook brand community. Management Research Review, 35(9), 857–877.
Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: what motivates consumers to articulate themselves on the internet?. Journal of interactive marketing, 18(1), 38-52.
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5–53.
Hirschman, A. O. (1970). Exit, voice, and loyalty: Responses to decline in firms, organizations, and states (Vol. 25). Cambridge, M.A.: Harvard University Press.
Hollebeek, L. D. (2011). Exploring customer brand engagement: definition and themes. Journal of Strategic Marketing, 19(7), 555–573.
Hollebeek, L. D., & Chen, T. (2014). Exploring positively- versus negatively-valenced brand engagement: A conceptual model. Journal of Product and Brand Management, 23(1), 62–74.
Hollebeek, L. D., Srivastava, R. K., & Chen, T. (2016). SD logic-informed customer engagement: Integrative framework, revised fundamental propositions, and application to CRM. Journal of the Academy of Marketing Science, 47(1), 161–185.
Hoyer, W. D., Chandy, R., Dorotic, M., Krafft, M., & Singh, S. S. (2010). Consumer co-creation in new product development. Journal of Service Research, 13(3), 283–296.
Hu, M., & Liu, B. (2004, August). Mining and summarizing customer reviews. Conference proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, Seattle, W.A., 168–177.
Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service, Journal of Service Research, 21(2), 155–172.
Hunt, S. D., & Menon, A. (1995). Metaphors and competitive advantage: Evaluating the use of metaphors in theories of competitive strategy. Journal of Business Research, 33(2), 81–90.
Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261–273.
Jaakkola, E., & Alexander, M. (2014). The role of customer engagement behavior in value co-creation: a service system perspective. Journal of Service Research, 17(3), 247–261.
Jacucci, G., Spagnolli, A., Freeman, J., & Gamberini, L. (2015, October). Symbiotic interaction: a critical definition and comparison to other human-computer paradigms. In International Workshop on Symbiotic Interaction (pp. 3-20).
Jahn, B., & Kunz, W. (2012). How to transform consumers into fans of your brand. Journal of Service Management, 23(3), 344–361.
Kaartemo, V., & Helkkula, A. (2018). A systematic review of artificial intelligence and robots in value co-creation: Current status and future research avenues. Journal of Creating Value, 4(2), 1–18.
Karimi, J., Somers, T. M., & Gupta, Y. P. (2001). Impact of information technology management practices on customer service. Journal of Management Information Systems, 17(4), 125–158.
Kitchens, B., Dobolyi, D., Li, J., & Abbasi, A. (2018). Advanced customer analytics: Strategic value through integration of relationship-oriented big data. Journal of Management Information Systems, 35(2), 540–574.
Koren, Y. (2008). Factorization meets the neighborhood: A multifaceted collaborative filtering model. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada.
Kotler, P. (1973). Atmospherics as a marketing tool, Journal of Retailing, 49(4), 48–64.
Kumar, V., Chattaraman, V., Neghina, C., Skiera, B., Aksoy, L., Buoye, A., & Henseler, J. (2013). Data-driven services marketing in a connected world. Journal of Service Management, 24(3), 330–352.
Kumar, V., Dixit, A., Javalgi, R. R. G., & Dass, M. (2016). Research framework, strategies, and applications of intelligent agent technologies (IATs) in marketing. Journal of the Academy of Marketing Science, 44(1), 24–45.
Kunz, W., Aksoy, L., Bart, Y., Heinonen, K., Kabadayi, S., Villaroel Ordenes, F. , Sigala, M., Diaz, D., & Theodoulidis, B. (2017). Customer engagement in a big data world. Journal of Services Marketing, 31(2), 161–171.
Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69–96.
Li, S. T., Shue, L. Y., & Lee, S. F. (2008). Business intelligence approach to supporting strategy-making of ISP service management. Expert Systems with Applications, 35(3), 739–754.
MacInnis, D. J. (2011). A framework for conceptual contributions in marketing. Journal of Marketing, 75(4), 136–154.
Marbach, J., Lages, C. R., & Nunan, D. (2016). Who are you and what do you value? Investigating the role of personality traits and customer-perceived value in online customer engagement. Journal of Marketing Management, 32(5–6), 502–525.
Marinova, D., de Ruyter, K., Huang, M. H., Meuter, M. L., & Challagalla, G. (2017). Getting smart: Learning from technology-empowered frontline interactions. Journal of Service Research, 20(1), 29–42.
Maslowska, E., Malthouse, E.C. and Collinger, T. (2016). The customer engagement ecosystem. Journal of Marketing Management, 32 (5-6), 469-501.
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955). A proposal for the Dartmouth summer research project on artificial intelligence [Online]. http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html Accessed 12 November 2018.
Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology, Cambridge, M.A.: MIT Press.
Oelke, D., Hao, M., Rohrdantz, C., Keim, D. A., Dayal, U., Haug, L. E., & Janetzko, H. (2009, October). Visual opinion analysis of customer feedback data. In 2009 IEEE Symposium on Visual Analytics Science and Technology (187-194). IEEE.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135.
Pansari, A., & Kumar, V. (2017). Customer engagement: The construct, antecedents, and consequences. Journal of the Academy of Marketing Science, 45(3), 294–311.
Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender systems: Introduction and challenges. In F. Ricci et al. (Eds.), Recommender Systems Handbook (pp. 1–34)., Boston, M.A.: Springer.
Rust, R. T., & Huang, M. H. (2014). The service revolution and the transformation of marketing science, Marketing Science, 33(2), 206–221.
Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys (CSUR), 34(1), 1–47.
Smith, A. N., Fischer, E., & Yongjian, C. (2012). How does brand-related user-generated content differ across YouTube, Facebook, and Twitter? Journal of Interactive Marketing, 26(2), 102–113.
Sterne, J. (2017). Artificial intelligence for marketing: Practical applications. Hoboken, N.J.: John Wiley and Sons.
Storbacka, K., Brodie, R. J., Böhmann, T., Maglio, P. P., & Nenonen, S. (2016). Actor engagement as a microfoundation for value co-creation. Journal of Business Research, 69(8), 3008-3017.
Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial Marketing Management, 69, 135–146.
Trusov, M., Bucklin, R. E., & Pauwels, K. (2009). Effects of word-of-mouth versus traditional marketing: Findings from an internet social networking site. Journal of Marketing, 73(5), 90–102.
Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., & Chatzisavvas, K. C. (2015). A comparison of machine learning techniques for customer churn prediction. Simulation Modelling Practice and Theory, 55, 1–9.
Van Doorn, J., Lemon, K. N., Mittal, V., Nass, S., Pick, D., Pirner, P., & Verhoef, P. C. (2010). Customer engagement behavior: Theoretical foundations and research directions, Journal of Service Research, 13(3), 253–266.
Van Doorn, J., Mende, M., Noble, S. M., Hulland, J., Ostrom, A. L., Grewal, D., & Petersen, J. A. (2017). Domo arigato Mr. Roboto: Emergence of automated social presence in organizational frontlines and customers’ service experiences. Journal of Service Research, 20(1), 43–58.
Vargo, S.L., Maglio, P.P. and Akaka, M.A. (2008). On value and value co-creation: A service systems and service logic perspective. European Management Journal, 26(3), 145-152.
Verhoef, P. C., Reinartz, W. J., & Krafft, M. (2010). Customer engagement as a new perspective in customer management. Journal of Service Research, 13(3), 247–252.
Villaroel Ordenes, F. , Theodoulidis, B., Burton, J., Gruber, T., & Zaki, M. (2014). Analyzing customer experience feedback using text mining: A linguistics-based approach. Journal of Service Research, 17(3), 278–295.
Waite, K., & Rowley, J. (2014). E-servicescapes in online banking: Towards an integrated conceptual model of the stimuli contributing to the online banking experience. In T. Harrison & H. Estelami (Eds.), The Routledge Companion to Financial Services Marketing (pp. 376–394). Abingdon, Oxfordshire: Routledge.
Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97–121.
Weinberg, B. D., Milne, G. R., Andonova, Y. G. & Hajjat, F. M. (2015). Internet of things: convenience vs privacy and secrecy. Business Horizons, 58(6), pp. 615–624.
Wirtz, J., & Mattila, A. S. (2004). Consumer responses to compensation, speed of recovery and apology after a service failure. International Journal of Service Industry Management, 15(2), 150–166.
Wirtz, J., Den Ambtman, A., Bloemer, J., Horváth, C., Ramaseshan, B., Van De Klundert, J., ... & Kandampully, J. (2013). Managing brands and customer engagement in online brand communities. Journal of Service Management, 24(3), 223–244.
Zhu, D. H., Chang, Y. P., & Luo, J. J. (2016). Understanding the influence of C2C communication on purchase decision in online communities from a perspective of information adoption model. Telematics Inform, 33(1), 8–16.
Ziegler, C. N., Skubacz, M., & Viermetz, M. (2008, December). Mining and exploring unstructured customer feedback data using language models and treemap visualizations. In 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (Vol. 1, 932-937). IEEE. University Staff: Request a correction | Centaur Editors: Update this record |