Accessibility navigation


Response of the Atlantic meridional overturning circulation to a reversal of greenhouse gas increases

Jackson, L.C., Schaller, N., Smith, R.S., Palmer, M.D. and Vellinga, M. (2014) Response of the Atlantic meridional overturning circulation to a reversal of greenhouse gas increases. Climate Dynamics, 42 (11-12). pp. 3323-3336. ISSN 1432-0894

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1007/s00382-013-1842-5

Abstract/Summary

The reversibility of the Atlantic meridional overturning circulation (AMOC) is investigated in multi-model experiments using global climate models (GCMs) where CO2 concentrations are increased by 1 or 2 % per annum to 2× or 4× preindustrial conditions. After a period of stabilisation the CO2 is decreased back to preindustrial conditions. In most experiments when the CO2 decreases, the AMOC recovers before becoming anomalously strong. This "overshoot" is up to an extra 18.2Sv or 104 % of its preindustrial strength, and the period with an anomalously strong AMOC can last for several hundred years. The magnitude of this overshoot is shown to be related to the build up of salinity in the subtropical Atlantic during the previous period of high CO2 levels. The magnitude of this build up is partly related to anthropogenic changes in the hydrological cycle. The mechanisms linking the subtropical salinity increase to the subsequent overshoot are analysed, supporting the relationship found. This understanding is used to explain differences seen in some models and scenarios. In one experiment there is no overshoot because there is little salinity build up, partly as a result of model differences in the hydrological cycle response to increased CO2 levels and partly because of a less aggressive scenario. Another experiment has a delayed overshoot, possibly as a result of a very weak AMOC in that GCM when CO2 is high. This study identifies aspects of overshoot behaviour that are robust across a multi-model and multi-scenario ensemble, and those that differ between experiments. These results could inform an assessment of the real-world AMOC response to decreasing CO2.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Walker Institute
Faculty of Science > School of Mathematical, Physical and Computational Sciences > NCAS
Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:33244
Publisher:Springer

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation