Accessibility navigation


The ability of CMIP5 models to simulate North Atlantic extratropical cyclones

Zappa, G., Shaffrey, L. C. and Hodges, K. I. (2013) The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. Journal of Climate, 26 (15). pp. 5379-5396. ISSN 1520-0442

[img]
Preview
Text - Published Version
· Please see our End User Agreement before downloading.

1910Kb

To link to this article DOI: 10.1175/JCLI-D-12-00501.1

Abstract/Summary

The ability of the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) to simulate North Atlantic extratropical cyclones in winter [December–February (DJF)] and summer [June–August (JJA)] is investigated in detail. Cyclones are identified as maxima in T42 vorticity at 850 hPa and their propagation is tracked using an objective feature-tracking algorithm. By comparing the historical CMIP5 simulations (1976–2005) and the ECMWF Interim Re-Analysis (ERA-Interim; 1979–2008), the authors find that systematic biases affect the number and intensity of North Atlantic cyclones in CMIP5 models. In DJF, the North Atlantic storm track tends to be either too zonal or displaced southward, thus leading to too few and weak cyclones over the Norwegian Sea and too many cyclones in central Europe. In JJA, the position of the North Atlantic storm track is generally well captured but some CMIP5 models underestimate the total number of cyclones. The dynamical intensity of cyclones, as measured by either T42 vorticity at 850 hPa or mean sea level pressure, is too weak in both DJF and JJA. The intensity bias has a hemispheric character, and it cannot be simply attributed to the representation of the North Atlantic large- scale atmospheric state. Despite these biases, the representation of Northern Hemisphere (NH) storm tracks has improved since CMIP3 and some CMIP5 models are able of representing well both the number and the intensity of North Atlantic cyclones. In particular, some of the higher-atmospheric-resolution models tend to have a better representation of the tilt of the North Atlantic storm track and of the intensity of cyclones in DJF.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical and Physical Sciences > National Centre for Earth Observation (NCEO)
Faculty of Science > School of Mathematical and Physical Sciences > NCAS
Faculty of Science > School of Mathematical and Physical Sciences > Department of Meteorology
ID Code:34544
Publisher:American Meteorological Society

Download Statistics for this item.

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation