Accessibility navigation


Impacts of plant-based foods in ancestral hominin diets on the metabolism and function of gut microbiota in vitro

Frost, G. S., Walton, G. E. ORCID: https://orcid.org/0000-0001-5426-5635, Swann, J. R., Psichas, A., Costabile, A., Johnson, L. P., Sponheimer, M., Gibson, G. R. and Barraclough, T. G. (2014) Impacts of plant-based foods in ancestral hominin diets on the metabolism and function of gut microbiota in vitro. mBio, 5. e00853-14. ISSN 2150-7511

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1128/mbio.00853-14

Abstract/Summary

Ancestral human populations had diets containing more indigestible plant material than present-day diets in industrialized countries. One hypothesis for the rise in prevalence of obesity is that physiological mechanisms for controlling appetite evolved to match a diet with plant fiber content higher than that of present-day diets. We investigated how diet affects gut microbiota and colon cells by comparing human microbial communities with those from a primate that has an extreme plant-based diet, namely, the gelada baboon, which is a grazer. The effects of potato (high starch) versus grass (high lignin and cellulose) diets on human-derived versus gelada-derived fecal communities were compared in vitro. We especially focused on the production of short-chain fatty acids, which are hypothesized to be key metabolites influencing appetite regulation pathways. The results confirmed that diet has a major effect on bacterial numbers, short-chain fatty acid production, and the release of hormones involved in appetite suppression. The potato diet yielded greater production of short-chain fatty acids and hormone release than the grass diet, even in the gelada cultures, which we had expected should be better adapted to the grass diet. The strong effects of diet on hormone release could not be explained, however, solely by short-chain fatty acid concentrations. Nuclear magnetic resonance spectroscopy found changes in additional metabolites, including betaine and isoleucine, that might play key roles in inhibiting and stimulating appetite suppression pathways. Our study results indicate that a broader array of metabolites might be involved in triggering gut hormone release in humans than previously thought. IMPORTANCE: One theory for rising levels of obesity in western populations is that the body's mechanisms for controlling appetite evolved to match ancestral diets with more low-energy plant foods. We investigated this idea by comparing the effects of diet on appetite suppression pathways via the use of gut bacterial communities from humans and gelada baboons, which are modern-day primates with an extreme diet of low-energy plant food, namely, grass. We found that diet does play a major role in affecting gut bacteria and the production of a hormone that suppresses appetite but not in the direction predicted by the ancestral diet hypothesis. Also, bacterial products were correlated with hormone release that were different from those normally thought to play this role. By comparing microbiota and diets outside the natural range for modern humans, we found a relationship between diet and appetite pathways that was more complex than previously hypothesized on the basis of more-controlled studies of the effects of single compounds.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Biological Sciences > Biomedical Sciences
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Food Microbial Sciences Research Group
ID Code:37310
Publisher:American Society for Microbiology

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation