References
1. Buckland, G.; Mayén, A.L.; Agudo, A.; Travier, N.; Navarro, C.; Huerta, J.M.; Chirlaque, M.D.; Barricarte, A.; Ardanaz, E.;
Moreno-Iribas, C.; et al. Olive oil intake and mortality within the Spanish population (EPIC-Spain). Am. J. Clin. Nutr. 2012, 96,
142–149. [CrossRef] [PubMed]
2. Ebbesson, S.O.E.; Voruganti, V.S.; Higgins, P.B.; Fabsitz, R.R.; Ebbesson, L.O.; Laston, S.; Harris,W.S.; Kennish, J.; Umans, B.D.;Wang,
H.; et al. Fatty acids linked to cardiovascular mortality are associated with risk factors. Int. J. Circumpolar Health 2015, 74, 28055.
[CrossRef] [PubMed]
3. McClements, D.J.; Decker, E.A. Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions
in heterogeneous food systems. J. Food Sci. 2000, 65, 1270–1282. [CrossRef]
4. McClements, D.J. Emulsion ingredients. In Food Emulsions: Principles, Practices, and Techniques; McClements, D.J., Ed.; CRC Press:
Boca Raton, FL, USA, 2016.
5. Patel, A.R.; Dewettinck, K. Edible oil structuring: An overview and recent updates. Food Funct. 2016, 7, 2–29. [CrossRef]
6. Morley, W. Reducing saturated fat using emulsion technology. In Reducing Saturated Fats in Foods; Elsevier: Amsterdam,
The Netherlands, 2011; pp. 131–157.
7. Lim, J.; Jeong, S.; Lee, J.; Park, S.; Lee, J.; Lee, S. Effect of shortening replacement with oleogels on the rheological and tomographic
characteristics of aerated baked goods: Solid fat replacement with oleogels in muffins. J. Sci. Food Agric. 2017, 97, 3727–3732.
[CrossRef]
8. Giacomozzi, A.S.; Carrín, M.E.; Palla, C.A. Muffins elaborated with optimized monoglycerides oleogels: From solid fat replacer
obtention to product quality evaluation: Muffins elaborated with optimized oleogels. J. Food Sci. 2018, 83, 1505–1515. [CrossRef]
9. Sanz, T.; Quiles, A.; Salvador, A.; Hernando, I. Structural changes in biscuits made with cellulose emulsions as fat replacers.
Food Sci. Technol. Int. 2017, 23, 480–489. [CrossRef]
10. Tarancón, P.; Salvador, A.; Sanz, T. Sunflower oil–water–cellulose ether emulsions as trans-fatty acid-free fat replacers in biscuits:
Texture and acceptability study. Food Bioprocess Technol. 2013, 6, 2389–2398. [CrossRef]
11. Santhanam, A.K.; Lekshmi, M.; Chouksey, M.K.; Tripathi, G.; Gudipati, V. Delivery of omega-3 fatty acids into cake through
emulsification of fish oil-in-milk and encapsulation by spray drying with added polymers. Dry. Technol. 2015, 33, 83–91.
[CrossRef]
12. Joung, H.J.; Choi, M.J.; Kim, J.T.; Park, S.H.; Park, H.J.; Shin, G.H. Development of food-grade curcumin nanoemulsion and its
potential application to food beverage system: Antioxidant property and In vitro digestion. J. Food Sci. 2016, 81, N745–N753.
[CrossRef]
13. Komaiko, J.S.; McClements, D.J. Formation of food-grade nanoemulsions using low-energy preparation methods: A review of
available methods. Compr. Rev. Food Sci. Food Saf. 2016, 15, 331–352. [CrossRef]
14. Pathakoti, K.; Manubolu, M.; Hwang, H.-M. Nanostructures: Current uses and future applications in food science. J. Food Drug Anal.
2017, 25, 245–253. [CrossRef] [PubMed]
15. Kim, S.O.; Ha, T.V.A.; Choi, Y.J.; Ko, S. Optimization of homogenization–evaporation process for lycopene nanoemulsion
production and its beverage applications. J. Food Sci. 2014, 79, N1604–N1610. [CrossRef] [PubMed]
16. Mason, T.G.; Wilking, J.N.; Meleson, K.; Chang, C.B.; Graves, S.M. Nanoemulsions: Formation, structure, and physical properties.
J. Phys. Condens. Matter 2006, 18, R635–R666. [CrossRef]
17. Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Physical and chemical stability of �-carotene-enriched nanoemulsions: Influence
of pH, ionic strength, temperature, and emulsifier type. Food Chem. 2012, 132, 1221–1229. [CrossRef] [PubMed]
18. Hategekimana, J.; Chamba, M.V.M.; Shoemaker, C.F.; Majeed, H.; Zhong, F. Vitamin E nanoemulsions by emulsion phase
inversion: Effect of environmental stress and long-term storage on stability and degradation in different carrier oil types.
Colloids Surf. A Physicochem. Eng. Asp. 2015, 483, 70–80. [CrossRef]
19. Öztürk, B. Nanoemulsions for food fortification with lipophilic vitamins: Production challenges, stability, and bioavailability:
Nanoemulsion delivery systems for lipophilic vitamins. Eur. J. Lipid Sci. Technol. 2017, 119, 1500539. [CrossRef]
20. Chan, S.W.; Mirhosseini, H.; Taip, F.S.; Ling, T.C.; Tan, C.P. Stability of CoQ10-loaded oil-in-water (O/W) emulsion: Effect of
carrier oil and emulsifier type. Food Biophys. 2013, 8, 273–281. [CrossRef]
21. Sahafi, S.M.; Goli, S.A.H.; Kadivar, M.; Varshosaz, J. Preparation and characterization of bioactive oils nanoemulsions: Effect of
oil unsaturation degree, emulsifier type and concentration. J. Dispers. Sci. Technol. 2018, 39, 676–686. [CrossRef]
22. Gahruie, H.H.; Niakousari, M.; Parastouei, K.; Mokhtarian, M.; E¸s, I.; Mousavi Khaneghah, A. Co-encapsulation of vitamin D3
and saffron petals’ bioactive compounds in nanoemulsions: Effects of emulsifier and homogenizer types. J. Food Processing Preserv.
2020, 44, e14629. [CrossRef]
23. McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review.
Adv. Colloid Interface Sci. 2018, 251, 55–79. [CrossRef] [PubMed]
24. Jacobsen, C.; Let, M.B.; Nielsen, N.S.; Meyer, A.S. Antioxidant strategies for preventing oxidative flavour deterioration of foods
enriched with n-3 polyunsaturated lipids: A comparative evaluation. Trends Food Sci. Technol. 2008, 19, 76–93. [CrossRef]
25. Kargar, M.; Spyropoulos, F.; Norton, I.T. The effect of interfacial microstructure on the lipid oxidation stability of oil-in-water
emulsions. J. Colloid Interface Sci. 2011, 357, 527–533. [CrossRef] [PubMed]
26. Yoo, Y.J.; Um, I.C. Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology. Korea Aust.
Rheol. J. 2013, 25, 67–75. [CrossRef]
27. Li, X.; Al-Assaf, S.; Fang, Y.; Phillips, G.O. Competitive adsorption between sugar beet pectin (SBP) and hydroxypropyl
methylcellulose (HPMC) at the oil/water interface. Carbohydr. Polym. 2013, 91, 573–580. [CrossRef] [PubMed]
28. Seyedlar, R.M.; Nodehi, A.; Atai, M.; Imani, M. Gelation behavior of in situ forming gels based on HPMC and biphasic calcium
phosphate nanoparticles. Carbohydr. Polym. 2014, 99, 257–263. [CrossRef] [PubMed]
29. Hussain, S.; Keary, C.; Craig, D.Q.M. A thermorheological investigation into the gelation and phase separation of hydroxypropyl
methylcellulose aqueous systems. Polymer 2002, 43, 5623–5628. [CrossRef]
30. Silva, S.M.C.; Pinto, F.V.; Antunes, F.E.; Miguel, M.G.; Sousa, J.J.S.; Pais, A.A.C.C. Aggregation and gelation in hydroxypropylmethyl
cellulose aqueous solutions. J. Colloid Interface Sci. 2008, 327, 333–340. [CrossRef]
31. Sanz, T.; Falomir, M.; Salvador, A. Reversible thermal behaviour of vegetable oil cellulose ether emulsions as fat replacers.
Influence of glycerol. Food Hydrocoll. 2015, 46, 19–27. [CrossRef]
32. Meng, Z.; Qi, K.; Guo, Y.;Wang, Y.; Liu, Y. Physical properties, microstructure, intermolecular forces, and oxidation stability of
soybean oil oleogels structured by different cellulose ethers. Eur. J. Lipid Sci. Technol. 2018, 120, 1700287. [CrossRef]
33. Meng, Z.; Qi, K.; Guo, Y.; Wang, Y.; Liu, Y. Effects of thickening agents on the formation and properties of edible oleogels based
on hydroxypropyl methyl cellulose. Food Chem. 2018, 246, 137–149. [CrossRef]
34. Sanz, T.; Laguna, L.; Salvador, A. Biscuit dough structural changes during heating: Influence of shortening and cellulose ether
emulsions. Food Sci. Technol. 2015, 62, 962–969. [CrossRef]
35. Bueschelberger, H.G.; Tirok, S.; Stoffels, I.; Schoeppe, A. Lecithins; John Wiley & Sons, Ltd.: Chichester, UK, 2004; pp. 21–60.
36. Liu, S.Q.; Joshi, S.C.; Lam, Y.C. Effects of salts in the Hofmeister series and solvent isotopes on the gelation mechanisms for
hydroxypropylmethylcellulose hydrogels. J. Appl. Polym. Sci. 2008, 109, 363–372. [CrossRef]
37. Ding, C.; Zhang, M.; Li, G. Rheological properties of collagen/hydroxypropyl methylcellulose (COL/HPMC) blended solutions.
J. Appl. Polym. Sci. 2014, 131, e40042. [CrossRef]
38. Arancibia, C.; Navarro-Lisboa, R.; Zúñiga, R.N.; Matiacevich, S. Application of CMC as thickener on nanoemulsions based on
olive oil: Physical properties and stability. Int. J. Polym. Sci. 2016, 2016, 6280581. [CrossRef]
39. Taha, A.; Hu, T.; Hu, H.; Zhang, Z.; Bakry, A.M.; Khalifa, I.; Pan, S. Effect of different oils and ultrasound emulsification conditions
on the physicochemical properties of emulsions stabilized by soy protein isolate. Ultrason.-Sonochem. 2018, 49, 283–293. [CrossRef]
40. Kampa, J.; Khalil Ghawi, S.; Rodriguez-Garcia, J. Optimisation of the physicochemical stability of extra virgin olive oil-in-water
nanoemulsion: Processing parameters and stabiliser type. Eur. Food Res. Technol. 2022, 106489. [CrossRef]
41. Bai, L.; Huan, S.; Gu, J.; McClements, D.J. Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using
natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocoll. 2016, 61, 703–711. [CrossRef]
42. Luo, X.; Zhou, Y.; Bai, L.; Liu, F.; Zhang, Z.; Zhang, R.; Zheng, B.; Deng, Y.; McClements, D.J. Production of highly concentrated
oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and
lecithin). Food Res. Int. 2017, 96, 103–112. [CrossRef]
43. El-Sukkary, M.M.A.; Syed, N.A.; Aiad, I.; El-Azab,W.I.M. Synthesis and characterization of some alkyl polyglycosides surfactants.
J. Surfactants Deterg. 2008, 11, 129–137. [CrossRef]
44. Mukherjee, I.; Moulik, S.P.; Rakshit, A.K. Tensiometric determination of Gibbs surface excess and micelle point: A critical revisit.
J. Colloid Interface Sci. 2013, 394, 329–336. [CrossRef]
45. Vithanage, C.R.; Grimson, M.J.; Smith, B.G. The effect of temperature on the rheology of butter, a spreadable blend and spreads.
J. Texture Stud. 2009, 40, 346–369. [CrossRef]
46. Stefan, K.; Kocevski, D. Determination of the rheological properties of mayonnaise. Int. J. Eng. 2013, 4, 8269.
47. Chetana, R.; Bhavana, K.P.; Babylatha, R.; Geetha, V.; Suresh Kumar, G. Studies on eggless mayonnaise from rice bran and sesame
oils. J. Food Sci. Technol. 2019, 56, 3117–3125. [CrossRef]
48. Glibowski, P.; Zarzycki, P.; Krzepkowska, M. The rheological and instrumental textural properties of selected table fats.
Int. J. Food Prop. 2008, 11, 678–686. [CrossRef]
49. Guerra-Rosas, M.I.; Morales-Castro, J.; Ochoa-Martínez, L.A.; Salvia-Trujillo, L.; Martín-Belloso, O. Long-term stability of
food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocoll. 2016, 52, 438–446. [CrossRef]
Sharif, H.R.; Williams, P.A.; Sharif, M.K.; Khan, M.A.; Majeed, H.; Safdar, W.; Shamoon, M.; Shoaib, M.; Haider, J.; Zhong, F.
Influence of OSA-starch on the physico chemical characteristics of flax seed oil-eugenol nanoemulsions. Food Hydrocoll. 2017, 66,
365–377. [CrossRef]
51. Qiu, C.; Zhao, M.; Decker, E.A.; McClements, D.J. Influence of protein type on oxidation and digestibility of fish oil-in-water
emulsions: Gliadin, caseinate, and whey protein. Food Chem. 2015, 175, 249–257. [CrossRef]
52. Perone, N.; Torrieri, E.; Cavella, S.; Masi, P. Effect of rosemary oil and HPMC concentrations on film structure and properties.
Food Bioprocess Technol. 2014, 7, 605–609. [CrossRef]
53. Bodvik, R.; Dedinaite, A.; Karlson, L.; Bergström, M.; Bäverbäck, P.; Pedersen, J.S.; Edwards, K.; Karlsson, G.; Varga, I.;
Claesson, P.M. Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions.
Colloids Surf. A Physicochem. Eng. Asp. 2010, 354, 162–171. [CrossRef]
54. Li, L.; Thangamathesvaran, P.M.; Yue, C.Y.; Tam, K.C.; Hu, X.; Lam, Y.C. Gel network structure of methylcellulose in water.
Langmuir 2001, 17, 8062–8068. [CrossRef]
55. Joshi, S.C. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 2011, 4,
1861–1905. [CrossRef]
56. Lim, C.; Song, Y.H.; Song, Y.; Seo, J.H.; Hwang, D.S.; Lee, D.W. Adaptive amphiphilic interaction mechanism of hydroxypropyl
methylcellulose in water. Appl. Surf. Sci. 2021, 565, e150535. [CrossRef]
57. Desbrières, J.; Hirrien, M.; Ross-Murphy, S.B. Thermogelation of methylcellulose: Rheological considerations. Polymer 2000, 41,
2451–2461. [CrossRef]
58. Zhu, M.; Wen, X.; Zhao, J.; Liu, F.; Ni, Y.; Ma, L.; Li, J. Effect of industrial chemical refining on the physicochemical properties and
the bioactive minor components of peanut oil. J. Am. Oil Chem. Soc. 2016, 93, 285–294. [CrossRef]
59. Sun,W.; Sun, D.;Wei, Y.; Liu, S.; Zhang, S. Oil-in-water emulsions stabilized by hydrophobically modified hydroxyethyl cellulose:
Adsorption and thickening effect. J. Colloid Interface Sci. 2007, 311, 228–236. [CrossRef]
60. McClements, D. Comments on viscosity enhancement and depletion flocculation by polysaccharides. Food Hydrocoll. 2000, 14,
173–177. [CrossRef]
61. Wang, Y.; Wei, X.; Li, J.; Wang, F.; Wang, Q.; Chen, J.; Kong, L. Study on nanocellulose by high pressure homogenization in
homogeneous isolation. Fibers Polym. 2015, 16, 572–578. [CrossRef]
62. Qian, C.; McClements, D.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure
homogenization: Factors affecting particle size. Food Hydrocoll. 2011, 25, 1000–1008. [CrossRef]
63. Floury, J.; Desrumaux, A.; Lardières, J. Effect of high-pressure homogenization on droplet size distributions and rheological
properties of model oil-in-water emulsions. Innov. Food Sci. Emerg. Technol. 2000, 1, 127–134. [CrossRef]
64. Silva, H.D.; Cerqueira, M.A.; Vicente, A.A. Influence of surfactant and processing conditions in the stability of oil-in-water
nanoemulsions. J. Food Eng. 2015, 167, 89–98. [CrossRef]
65. Mehmood, T.; Ahmed, A.; Ahmed, Z.; Ahmad, M.S. Optimization of soya lecithin and Tween 80 based novel vitamin D
nanoemulsions prepared by ultrasonication using response surface methodology. Food Chem. 2019, 289, 664–670. [CrossRef]
66. Dickinson, E. Introduction to Food Colloids; Oxford University Press: Oxford, UK, 1992.
67. Sovilj, V.J.; Petrovi´c, L.B. Influence of hydroxypropylmethyl cellulose–sodium dodecylsulfate interaction on the solution conductivity
and viscosity and emulsion stability. Carbohydr. Polym. 2006, 64, 41–49. [CrossRef]
68. Borreani, J.; Espert, M.; Salvador, A.; Sanz, T.; Quiles, A.; Hernando, I. Oil-in-water emulsions stabilised by cellulose ethers:
Stability, structure and in vitro digestion. Food Funct. 2017, 8, 1547–1557. [CrossRef] [PubMed]
69. Tadros, T.; Izquierdo, R.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004, 108,
303–318. [CrossRef] [PubMed]
70. Gohtani, S.; Sirendi, M.; Yamamoto, N.; Kajikawa, K.; Yamano, Y. Effect of droplet size on oxidation of docosahexanenoic acid in
emulsion system. J. Dispers. Sci. Technol. 1999, 20, 1319–1325. [CrossRef]
71. Sun, Y.-E.; Wang, W.-D.; Chen, H.-W.; Li, C. Autoxidation of unsaturated lipids in food emulsion. Crit. Rev. Food Sci. Nutr.
2011, 51, 453–466. [CrossRef]
72. Gunstone, F. Oils and Fats in the Food Industry; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 6.