Ahn, M.-S., Kim, D., Kang, D., Lee, J., Sperber, K. R., Gleckler, P. J., 700 et al. (2020). MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophysical Research
Letters, 47, e2020GL087250. https://doi.org/10.1029/2020GL087250
Arakawa, A., and Schubert, W. H. (1974), Interaction of a cumulus cloud ensemble with the large704
scale environment, Part I. J. Atm Sci, 31.3, 674-701.
Birch, C. E., Roberts, M. J., Garcia-Carreras, L., Ackerley, D., Reeder, M. J., Lock, A. P. and
Schiemann, R. (2015) Seabreeze dynamics and convection initiation: the influence of convective
parameterization in weather and climate model biases. Journal of Climate, 28 (20). pp. 8093-8108.
ISSN 1520-0442 doi: https://doi.org/10.1175/JCLI-D-14-00850.1
Brown, A.R., Cederwall, R. T., Chlond, A., Duynkerke, P.G., Golaz, J.-C., Khairoutdinov, M.,
Lewellen, D. C., Lock, A. P., Macvean, M. K., Moeng, C.-H., Neggers, R.A.J., Siebesma, A. P. and
Stevens B. (2002) Large-eddy simulation of the diurnal cycle of shallow cumulus convection over
land. Q.J.R. Meteorol. Soc. 128, 1075-1093.
Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J. and Shelly, A. (2012) Unified modeling
and prediction of weather and climate: a 25 year journey. Bulletin of the American Meteorological
Society, 93, 1865–1877. https://doi.org/10.1175/BAMS-D-12-00018.1
Brown, N., Weiland, M., Hill, A., Shipway, B., Maynard, C., Allen, T., & Rezny, M. (2015). A highly
scalable Met Office NERC Cloud model. In Proceedings of the 3rd International Conference on
Exascale Applications and Software (pp. 132– 137).
Bush, M., Boutle, I., Edwards, J., Finnenkoetter, A., Franklin, C., Hanley, K., Jayakumar, A., Lewis,
H., Lock, A., Mittermaier, M., Mohandas, S., North, R., Porson, A., Roux, B., Webster, S., and
Weeks, M. (2023) The second Met Office Unified Model–JULES Regional Atmosphere and Land
configuration, RAL2, Geosci. Model Dev., 16, 1713–1734, https://doi.org/10.5194/gmd-16-1713-
2023
Chaboureau, J.-.-P., Guichard, F., Redelsperger, J.-.-L. and Lafore, J.-.-P. (2004), The role of stability
and moisture in the diurnal cycle of convection over land. Q.J.R. Meteorol. Soc., 130: 3105-3117.
https://doi.org/10.1256/qj.03.132
Chen, S. S., Houze , R. A., Jr., and Mapes, B. E. (1996). Multiscale Variability of Deep Convection in
Relation to Large-Scale Circulation in TOGA COARE. Journal of Atmospheric Sciences 53, 10,
1380-1409, https://doi.org/10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2
Christopoulos, C., & Schneider, T. (2021). Assessing biases and climate i 730 mplications of the diurnal
precipitation cycle in climate models. Geophysical Research Letters, 48, e2021GL093017.
https://doi.org/10.1029/2021GL093017
Couvreux, F., Rio, C., Guichard, F., Lothon, M., Canut, G., Bounoil, D. and Gounou, A. (2012)
Initiation of daytime local convection in a semi-arid region analysed with high resolution simulations
and AMMA observations. Q.J.R. Meteorol. Soc., 138, 56-71.
Couvreux, F., Roehrig, R., Rio, C., Lefebvre, M.-P., Caian, M., Komori, T., Derbyshire, S., Guichard,
F., Favot, F., D'Andrea, F., Bechtold, P. and Gentine, P. (2015), Representation of daytime moist
convection over the semi-arid Tropics by parametrizations used in climate and meteorological models.
Q.J.R. Meteorol. Soc, 141: 2220-2236. https://doi.org/10.1002/qj.2517
Daleu, C.L., Plant, R.S., Stirling, A.J. & Whitall, M.(2023) Evaluating the CoMorph-A
parametrization using idealized simulations of the two-way coupling between convection and large742
scale dynamics. Quarterly Journal of the Royal Meteorological Society, 1–23.
https://doi.org/10.1002/qj.4547
Daleu, C. L., Plant, R. S., Woolnough, S. J., Stirling A.J. and Harvey N.J. (2020) Memory Properties
in cloud-resolving simulations of the diurnal cycle of deep convection. JAMES 12
doi:10.1029/2019MS001897
Derbyshire, S.H., Beau, I., Bechtold, P., Grandpeix, J.‐Y., Piriou, J.‐M., Redelsperger, J.‐L. and
Soares, P.M.M. (2004), Sensitivity of moist convection to environmental humidity. Q.J.R. Meteorol.
Soc., 130: 3055-3079. doi:10.1256/qj.03.130
Fridlind, A.M., Ackerman, A.S., Chaboureau, J.-P., Fan, J., Grabowski, W.W., Hill, A.A., Jones,
T>R., Khaiyer, M.M, Liu, G., Minnis, P., Morrison, H., Nguyen, L., Park, S., Petch, J.C., Pinty, J.-P.,
Schumacher, C., Shipway, B.J., Varble, A.C., Wu, X., Xie, S. and Zhang, M. (2012) A comparison of
TWP-ICE observational data with cloud-resolving model results. J. Geophy. Res.
117, doi:10.1029/2011JD016595.
Gregory, D. and Guichard, F. (2002), Aspects of the parametrization of organized convection:
contrasting cloud-resolving model and single-column model realizations. Q.J.R. Meteorol. Soc., 128:
625-646. https://doi.org/10.1256/003590002321042126
Gregory, D. and Rowntree, P. R. (1990) A mass-flux convection scheme with representation of cloud
ensemble characteristics and stability dependent closure. Mon. Weather Rev., 118, 1483–1506.
Guichard, F., Petch, J.C., Redelsperger, J.-.-760 L., Bechtold, P., Chaboureau, J.-.-P., Cheinet, S.,
Grabowski, W., Grenier, H., Jones, C.G., Köhler, M., Piriou, J.-.-M., Tailleux, R. and Tomasini, M.
(2004), Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving
models and single-column models. Q.J.R. Meteorol. Soc., 130: 3139-3172.
https://doi.org/10.1256/qj.03.145
Hirons, L.C., Inness, P., Vitart, F. and Bechtold, P. (2013), Understanding advances in the simulation
of intraseasonal variability in the ECMWF model. Part II: The application of process-based
diagnostics. Q.J.R. Meteorol. Soc., 139: 1427-1444. https://doi.org/10.1002/qj.2059
Kershaw, R. and Gregory, D. (1997) Parametrization of momentum transport by convection. I:
Theory and cloud modelling results. Q.J.R. Meteorol. Soc., 123, 1133-1151.
Kim, D., Kug, J., and Sobel, A.H. (2014): Propagating versus Nonpropagating Madden–Julian
Oscillation Events. J. Climate, 27, 111–125, https://doi.org/10.1175/JCLI-D-13-00084.1.
Lenderink, G., Siebesma, A.P., Cheinet, S., Irons, S., Jones, C.G., Marquet, P., Müller, F., Olmeda,
D., Calvo, J., Sánchez, E. and Soares, P.M.M. (2004), The diurnal cycle of shallow cumulus clouds
over land: A single-column model intercomparison study. Q.J.R. Meteorol. Soc., 130: 3339-3364.
https://doi.org/10.1256/qj.03.122
Lock, A., Whitall, M., Stirling, A. J., Williams, K., Lavender, S. L., Morcrette, C., Matsubayashi, K.,
Field, P. R., Martin, G., Willett, M., Heming, J. (2023), The performance of the CoMorph A
convection scheme in global simulations with the Met Office Unified Model. Submitted to QJRMS.
Love, B.S., Matthews, A.J. and Lister, G.M.S. (2011), The diurnal cycle of precipitation over the
Maritime Continent in a high-resolution atmospheric model. Q.J.R. Meteorol. Soc., 137: 934-947.
https://doi.org/10.1002/qj.809
May, P. T., J. H. Mather, G. Vaughan, and C. Jakob (2008), Characterizing oceanic convective cloud
systems—The Tropical Warm Pool International Cloud Experiment, Bull. Am. Meteorol. Soc.,154,
153–155,doi:10.1175/BAMS-89-2-153.
McIntyre, W.A., Efstathiou, G.A. & Thuburn, J.(2022) A two-fluid single-column model of turbulent
shallow convection. Part III: Results and parameter sensitivity. Q.J.R. Meteorol. Soc., 1– 20.
https://doi.org/10.1002/qj.4390
Petch, J., Hill, A., Davies, L., Fridlind, A., Jakob, C., Lin, Y., Xie, S. and Zhu, P. (2014), Evaluation
of intercomparisons of four different types of model simulating TWP-ICE. Q.J.R. Meteorol. Soc.,
140: 826-837. https://doi.org/10.1002/qj.2192
Roberts, N. M., (2001), Results from simulations of 791 an organised convective event using the New
Dynamics at 12, 4 and 2 km resolution. NWP Technical Report No. 344. Joint Centre for Mesoscale
Meteorology, University of Reading, PO Box 243, Reading, Berkshire RG6 2BB, UK
Rooney, G.G., Stirling, A.J., Stratton, R.A., and Whitall, M.(2022) C-POOL: A scheme for modelling
convective cold pools in the Met Office Unified Model. Q J R Meteorol Soc, 962– 980.
https://doi.org/10.1002/qj.4241
Smith, R. N. B., (1990), A scheme for predicting layer clouds and their water content in a general
circulation model. Quart. J. Roy. Meteor. Soc., 116, 435–460, doi:10.1002/qj.49711649210.
Tomassini, L., Parker, D.J., Stirling, A., Bain, C., Senior, C. and Milton, S. (2017), The interaction
between moist diabatic processes and the atmospheric circulation in African Easterly Wave
propagation. Q.J.R. Meteorol. Soc., 143: 3207-3227. doi:10.1002/qj.3173
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P.,
Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W.,
Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K.,
Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C.,
Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K. and Zerroukat, M.
(2019) The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0
configurations. Geoscientific Model Development, 12 (5). pp. 1909-1963.
https://doi.org/10.5194/gmd-12-1909-2019
Whitall, M., Stirling, A., Lock, A., Lavender, S., Stratton, R., Matsubayashi, K. (2022) The CoMorph
convection scheme. UM Documentation Paper 043.
Willett, M. R., & Whitall, M. A. (2017). A simple prognostic based convective entrainment rate for
the unified model: Description and tests (technical report no. 617). Met Office.
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D., Comer, R., … Xavier,
P. K. (2017). The Met Office Global Coupled model 3.0 and 3.1 (GC3.0 and GC3.1) configurations.
Journal of Advances in Modeling Earth Systems, 10, 357–380.
https://doi.org/10.1002/2017MS001115
Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D., and Morcrette, C. J. (2008) PC2: A
prognostic cloud fraction and condensation scheme. I: Scheme description, Q. J. Roy. Meteorol. Soc.,
134, 2093–2107, https://doi.org/10.1002/qj.333
Wing, A. A., Reed, K. A., Satoh, 821 M., Stevens, B., Bony, S., and Ohno, T. (2018) Radiative–
convective equilibrium model intercomparison project, Geosci. Model Dev., 11, 793–813,
https://doi.org/10.5194/gmd-11-793-2018
Wing, A. A., Stauffer, C. L., Becker, T., Reed, K. A., Ahn, M.-S., & Arnold, N. P., et al. (2020).
Clouds and convective self-aggregation in a multimodel ensemble of radiative-convective equilibrium
simulations. Journal of Advances in Modeling Earth Systems, 12, e2020MS002138.
https://doi.org/10.1029/2020MS002138
Yang, G. Y., & Slingo, J. (2001). The diurnal cycle in the tropics. Monthly Weather Review, 129,
784–801.