The reaction of flavanols with nitrous acid protects against N-nitrosamine formation and leads to the formation of nitroso derivatives which inhibit cancer cell growthLee, S.Y.H., Munerol, B., Pollard, S., Youdim, K.A., Pannala, A.S., Kuhnle, G.G.C. ORCID: https://orcid.org/0000-0002-8081-8931, Debnam, E.S., Rice-Evans, C. and Spencer, J.P.E. ORCID: https://orcid.org/0000-0003-2931-7274 (2006) The reaction of flavanols with nitrous acid protects against N-nitrosamine formation and leads to the formation of nitroso derivatives which inhibit cancer cell growth. Free Radical Biology and Medicine, 40 (2). pp. 323-334. ISSN 0891-5849 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.freeradbiomed.2005.08.031 Abstract/SummaryStudies have suggested that diets rich in polyphenols Such as flavonoids may lead to a reduced risk of gastrointestinal cancers. We demonstrate the ability of monomeric and dimeric flavanols to scavenge reactive nitrogen species derived from nitrous acid. Both epicatechin and dimer B2 (epicatechin dimer) inhibited nitrous acid-induced formation of 3-nitrotyrosine and the formation of the carcinogenic N-nitrosamine, N-nitrosodimethylamine. The reaction of monomeric and dimeric epicatechin with nitrous acid led to the formation of mono- and di-nitroso flavanols, whereas the reaction with hesperetin resulted primarily in the formation of nitrated products. Although, epicatechin was transferred across the jejunum of the small intestine yielding metabolites, its nitroso form was not absorbed. Dimer B2 but not epicatechin monomer inhibited the proliferation of, and triggered apoptosis in, Caco-2 cells. The latter was accompanied by caspase-3 activation and reductions in Akt phosphorylation, suggesting activation of apoptosis via inhibition of prosurvival signaling. Furthermore, the dinitroso derivative of dimer B2, and to a lesser extent the dinitroso-epicatechin, also induced significant toxic effects in Caco-2 cells. The inhibitory effects on cellular proliferation were paralleled by early inhibition of ERK 1/2 phosphorylation and later reductions in cyclin D I levels, indicating modulation of cell cycle regulation in Caco-2 cells. These effects highlight multiple routes in which dietary derived flavanols may exert beneficial effects in the gastrointestinal tract. (c) 2005 Elsevier Inc. All rights reserved.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |