Accessibility navigation

The impact of obesity-related single nucleotide polymorphisms on appetite and energy intake: a pilot study

Dougkas, A., Yaqoob, P., Givens, I., Reynolds, C. ORCID: and Minihane, A. M. (2013) The impact of obesity-related single nucleotide polymorphisms on appetite and energy intake: a pilot study. British Journal of Nutrition, 110 (06). pp. 1151-1156. ISSN 0007-1145

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1017/S0007114513000147


An increasing number of studies have reported a heritable component for the regulation of energy intake and eating behaviour, although the individual polymorphisms and their ‘effect size’ are not fully elucidated. The aim of the present study was to examine the relationship between specific SNP and appetite responses and energy intake in overweight men. In a randomised cross-over trial, forty overweight men (age 32 (sd 09) years; BMI 27 (sd 2) kg/m2) attended four sessions 1 week apart and received three isoenergetic and isovolumetric servings of dairy snacks or water (control) in random order. Appetite ratings were determined using visual analogue scales and energy intake at an ad libitum lunch was assessed 90 min after the dairy snacks. Individuals were genotyped for SNP in the fat mass and obesity-associated (FTO), leptin (LEP), leptin receptor (LEPR) genes and a variant near the melanocortin-4 receptor (MC4R) locus. The postprandial fullness rating over the full experiment following intake of the different snacks was 17·2 % (P= 0·026) lower in A carriers compared with TT homozygotes for rs9939609 (FTO, dominant) and 18·6 % (P= 0·020) lower in G carriers compared with AA homozygotes for rs7799039 (LEP, dominant). These observations indicate that FTO and LEP polymorphisms are related to the variation in the feeling of fullness and may play a role in the regulation of food intake. Further studies are required to confirm these initial observations and investigate the ‘penetrance’ of these genotypes in additional population subgroups.

Item Type:Article
Divisions:Life Sciences > School of Agriculture, Policy and Development > Department of Animal Sciences > Animal, Dairy and Food Chain Sciences (ADFCS)- DO NOT USE
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Human Nutrition Research Group
ID Code:30517
Publisher:Cambridge University Press

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation