Accessibility navigation


PPARGC1A sequence variation and cardiovascular risk-factor levels: a study of the main genetic effects and gene x environment interactions in children from the European Youth Heart Study.

Brito, E. C., Vimaleswaran, K. S. ORCID: https://orcid.org/0000-0002-8485-8930, Brage, S., Andersen, L. B., Sardinha, L. B., Wareham, N. J., Ekelund, U., Loos, R. J. F. and Franks, P. W. (2009) PPARGC1A sequence variation and cardiovascular risk-factor levels: a study of the main genetic effects and gene x environment interactions in children from the European Youth Heart Study. Diabetologia, 52 (4). pp. 609-613. ISSN 0012-186X

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1007/s00125-009-1269-z

Abstract/Summary

AIMS/HYPOTHESIS: The PPARGC1A gene coactivates multiple nuclear transcription factors involved in cellular energy metabolism and vascular stasis. In the present study, we genotyped 35 tagging polymorphisms to capture all common PPARGC1A nucleotide sequence variations and tested for association with metabolic and cardiovascular traits in 2,101 Danish and Estonian boys and girls from the European Youth Heart Study, a multicentre school-based cross-sectional cohort study. METHODS: Fasting plasma glucose concentrations, anthropometric variables and blood pressure were measured. Habitual physical activity and aerobic fitness were objectively assessed using uniaxial accelerometry and a maximal aerobic exercise stress test on a bicycle ergometer, respectively. RESULTS: In adjusted models, nominally significant associations were observed for BMI (rs10018239, p = 0.039), waist circumference (rs7656250, p = 0.012; rs8192678 [Gly482Ser], p = 0.015; rs3755863, p = 0.02; rs10018239, beta = -0.01 cm per minor allele copy, p = 0.043), systolic blood pressure (rs2970869, p = 0.018) and fasting glucose concentrations (rs11724368, p = 0.045). Stronger associations were observed for aerobic fitness (rs7656250, p = 0.005; rs13117172, p = 0.008) and fasting glucose concentrations (rs7657071, p = 0.002). None remained significant after correcting for the number of statistical comparisons. We proceeded by testing for gene x physical activity interactions for the polymorphisms that showed nominal evidence of association in the main effect models. None of these tests was statistically significant. CONCLUSIONS/INTERPRETATION: Variants at PPARGC1A may influence several metabolic traits in this European paediatric cohort. However, variation at PPARGC1A is unlikely to have a major impact on cardiovascular or metabolic health in these children.

Item Type:Article
Refereed:Yes
Divisions:No Reading authors. Back catalogue items
Interdisciplinary centres and themes > Institute for Cardiovascular and Metabolic Research (ICMR)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Human Nutrition Research Group
ID Code:34686
Publisher:Springer

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation