1 Ali, F. Y. et al. Antiplatelet actions of statins and fibrates are mediated by PPARs. Arterioscler Thromb Vasc Biol 29, 706-711, doi:10.1161/ATVBAHA.108.183160 (2009).
2 Moraes, L. A. et al. Non-genomic effects of PPARgamma ligands: inhibition of GPVI-stimulated platelet activation. Journal of thrombosis and haemostasis : JTH 8, 577-587, doi:10.1111/j.1538-7836.2009.03732.x (2010).
3 Moraes, L. A. et al. Nongenomic signaling of the retinoid X receptor through binding and inhibiting Gq in human platelets. Blood 109, 3741-3744, doi:10.1182/blood-2006-05-022566 (2007).
4 Moraes, L. A. et al. Farnesoid X Receptor and Its Ligands Inhibit the Function of Platelets. Arterioscler Thromb Vasc Biol 36, 2324-2333, doi:10.1161/atvbaha.116.308093 (2016).
5 Spyridon, M. et al. LXR as a novel antithrombotic target. Blood 117, 5751-5761, doi:10.1182/blood-2010-09-306142 (2011).
6 Unsworth, A. J. et al. RXR Ligands Negatively Regulate Thrombosis and Hemostasis. Arterioscler Thromb Vasc Biol 37, 812-822, doi:10.1161/atvbaha.117.309207 (2017).
7 Unsworth, A. J. et al. PPARgamma agonists negatively regulate alphaIIbbeta3 integrin outside-in signaling and platelet function through up-regulation of protein kinase A activity. Journal of thrombosis and haemostasis : JTH 15, 356-369, doi:10.1111/jth.13578 (2017).
8 Ihunnah, C. A., Jiang, M. & Xie, W. Nuclear Receptor PXR, transcriptional circuits and metabolic relevance. Biochimica et biophysica acta 1812, 956-963, doi:10.1016/j.bbadis.2011.01.014 (2011).
9 Ma, X., Idle, J. R. & Gonzalez, F. J. The Pregnane X Receptor: From Bench to Bedside. Expert opinion on drug metabolism & toxicology 4, 895-908, doi:10.1517/17425255.4.7.895 (2008).
10 Jones, S. A. et al. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Molecular endocrinology (Baltimore, Md.) 14, 27-39, doi:10.1210/mend.14.1.0409 (2000).
11 Escriva, H., Delaunay, F. & Laudet, V. Ligand binding and nuclear receptor evolution. BioEssays : news and reviews in molecular, cellular and developmental biology 22, 717-727, doi:10.1002/1521-1878(200008)22:8<717::aid-bies5>3.0.co;2-i (2000).
12 Timsit, Y. E. & Negishi, M. CAR and PXR: The Xenobiotic-Sensing Receptors. Steroids 72, 231-246, doi:10.1016/j.steroids.2006.12.006 (2007).
13 Krasowski, M. D., Yasuda, K., Hagey, L. R. & Schuetz, E. G. Evolution of the pregnane x receptor: adaptation to cross-species differences in biliary bile salts. Molecular endocrinology (Baltimore, Md.) 19, 1720-1739, doi:10.1210/me.2004-0427 (2005).
14 Gao, J. & Xie, W. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends in pharmacological sciences 33, 552-558 (2012).
15 Li, T., Chen, W. & Chiang, J. Y. PXR induces CYP27A1 and regulates cholesterol metabolism in the intestine. Journal of lipid research 48, 373-384 (2007).
16 de Haan, W. et al. PXR agonism decreases plasma HDL levels in ApoE⁎ 3-Leiden. CETP mice. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1791, 191-197 (2009).
17 Zhou, C., King, N., Chen, K. Y. & Breslow, J. L. Activation of PXR induces hypercholesterolemia in wild-type and accelerates atherosclerosis in apoE deficient mice. J Lipid Res 50, 2004-2013, doi:10.1194/jlr.M800608-JLR200 (2009).
18 Swales, K. E. et al. Pregnane X receptor regulates drug metabolism and transport in the vasculature and protects from oxidative stress. Cardiovascular research 93, 674-681 (2011).
19 Ray, D. M. et al. Peroxisome proliferator-activated receptor gamma and retinoid X receptor transcription factors are released from activated human platelets and shed in microparticles. Thrombosis and haemostasis 99, 86-95, doi:10.1160/th07-05-0328 (2008).
20 Evans, R. M. & Mangelsdorf, D. J. Nuclear Receptors, RXR & the Big Bang. Cell 157, 255-266, doi:10.1016/j.cell.2014.03.012 (2014).
21 Scheer, N., Ross, J., Kapelyukh, Y., Rode, A. & Wolf, C. R. In vivo responses of the human and murine pregnane X receptor to dexamethasone in mice. Drug metabolism and disposition: the biological fate of chemicals 38, 1046-1053, doi:10.1124/dmd.109.031872 (2010).
22 Scheer, N. et al. A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response. The Journal of clinical investigation 118, 3228-3239, doi:10.1172/jci35483 (2008).
23 Ma, X. et al. The Pregnane X receptor gene-humanized mouse: a model for investigating drug-drug interactions mediated by cytochromes P450 3A. Drug metabolism and disposition: the biological fate of chemicals 35, 194-200, doi:10.1124/dmd.106.012831 (2007).
24 Xie, W. et al. Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature 406, 435-439, doi:10.1038/35019116 (2000).
25 Dejana, E., Quintana, A., Callioni, A. & de Gaetano, G. Bleeding time in laboratory animals. III - Do tail bleeding times in rats only measure a platelet defect? (The aspirin puzzle). Thrombosis Research 15, 199-207, doi:https://doi.org/10.1016/0049-3848(79)90065-3 (1979).
26 Vaezzadeh, N., Ni, R., Kim, P. Y., Weitz, J. I. & Gross, P. L. Comparison of the effect of coagulation and platelet function impairments on various mouse bleeding models. Thrombosis and haemostasis 112, 412-418, doi:10.1160/th13-11-0919 (2014).
27 Greene, T. K., Schiviz, A., Hoellriegl, W., Poncz, M. & Muchitsch, E. M. Towards a standardization of the murine tail bleeding model. Journal of thrombosis and haemostasis : JTH 8, 2820-2822, doi:10.1111/j.1538-7836.2010.04084.x (2010).
28 Watson, S., Auger, J., McCarty, O. & Pearce, A. GPVI and integrin αIIbβ3 signaling in platelets. Journal of Thrombosis and Haemostasis 3, 1752-1762 (2005).
29 Senis, Y. A., Mazharian, A. & Mori, J. Src family kinases: at the forefront of platelet activation. Blood 124, 2013-2024 (2014).
30 Bye, A. P. et al. Severe platelet dysfunction in NHL patients receiving ibrutinib is absent in patients receiving acalabrutinib. Blood Advances 1, 2610-2623, doi:10.1182/bloodadvances.2017011999 (2017).
31 Futami, M. et al. G-CSF receptor activation of the Src kinase Lyn is mediated by Gab2 recruitment of the Shp2 phosphatase. Blood 118, 1077-1086, doi:10.1182/blood-2009-12-261636 (2011).
32 Vaiyapuri, S., Flora, G. D. & Gibbins, J. M. Gap junctions and connexin hemichannels in the regulation of haemostasis and thrombosis. Biochemical Society transactions 43, 489-494, doi:10.1042/bst20150055 (2015).
33 Metharom, P., Berndt, M. C., Baker, R. I. & Andrews, R. K. Current State and Novel Approaches of Antiplatelet TherapySignificance. Arteriosclerosis, thrombosis, and vascular biology 35, 1327-1338 (2015).
34 Flora, G. D. & Nayak, M. K. A Brief Review of Cardiovascular Diseases, Associated Risk Factors and Current Treatment Regimes. Current pharmaceutical design, doi:10.2174/1381612825666190925163827 (2019).
35 Unsworth, A. J., Flora, G. D. & Gibbins, J. M. Non-genomic effects of nuclear receptors: insights from the anucleate platelet. Cardiovasc Res 114, 645-655, doi:10.1093/cvr/cvy044 (2018).
36 Iyer, M., Reschly, E. J. & Krasowski, M. D. Functional evolution of the pregnane X receptor. Expert Opin Drug Metab Toxicol 2, 381-397, doi:10.1517/17425255.2.3.381 (2006).
37 Jones, S. A. et al. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Molecular Endocrinology 14, 27-39 (2000).
38 Moore, J. T. & Kliewer, S. A. Use of the nuclear receptor PXR to predict drug interactions. Toxicology 153, 1-10 (2000).
39 Bishop-Bailey, D. The platelet as a model system for the acute actions of nuclear receptors. Steroids 75, 570-575, doi:https://doi.org/10.1016/j.steroids.2009.09.005 (2010).
40 Ruslami, R. et al. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrobial agents and chemotherapy 51, 2546-2551 (2007).
41 Seth, V. et al. Serum concentrations of rifampicin and isoniazid in tuberculosis. Indian pediatrics 30, 1091-1098 (1993).
42 van Ingen, J. et al. Why do we use 600 mg of rifampicin in tuberculosis treatment? Clinical Infectious Diseases 52, e194-e199 (2011).
43 Rowley, J. W., Schwertz, H. & Weyrich, A. S. Platelet mRNA: the meaning behind the message. Current opinion in hematology 19, 385-391, doi:10.1097/MOH.0b013e328357010e (2012).
44 Schwertz, H., Rowley, J. W., Zimmerman, G. A., Weyrich, A. S. & Rondina, M. T. Retinoic acid receptor‐α regulates synthetic events in human platelets. Journal of Thrombosis and Haemostasis 15, 2408-2418 (2017).
45 Xu, B. & Koenig, R. J. An RNA-binding domain in the thyroid hormone receptor enhances transcriptional activation. Journal of Biological Chemistry 279, 33051-33056 (2004).
46 Ottaviani, S., de Giorgio, A., Harding, V., Stebbing, J. & Castellano, L. Noncoding RNAs and the control of hormonal signaling via nuclear receptor regulation. Journal of molecular endocrinology 53, R61-R70 (2014).
47 Ali, F. Y., Hall, M. G., Desvergne, B., Warner, T. D. & Mitchell, J. A. PPARbeta/delta agonists modulate platelet function via a mechanism involving PPAR receptors and specific association/repression of PKCalpha--brief report. Arterioscler Thromb Vasc Biol 29, 1871-1873, doi:10.1161/ATVBAHA.109.193367 (2009).
48 Watkins, R. E. et al. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science (New York, N.Y.) 292, 2329-2333, doi:10.1126/science.1060762 (2001).
49 Flora, G. D. Non-genomic effects of the Pregnane X Receptor (PXR) and Retinoid X Receptor (RXR) in platelets. PhD thesis, University of Reading, (2018).