• Bettuzzi, S., Brausi, M., Rizzi, F., Castagnetti, G., Peracchia, G., & Corti, A. (2006). Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a oneyear proof-of-principle study. Cancer Research, 66(2), 1234-1240.
• Ramassamy, C. (2006). Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. European Journal of Pharmacology, 545(1), 51-64.
• Del Rio, D., Rodriguez-Mateos, A., Spencer, J.P., Tognolini, M., Borges, G. and Crozier, A. (2013). Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal, 18, 1818–1892.
• Shrime, M. G., Bauer, S. R., McDonald, A. C., Chowdhury, N. H., Coltart, C. E., & Ding, E. L. (2011). Flavonoid-Rich Cocoa Consumption Affects Multiple Cardiovascular Risk Factors in a Meta-Analysis of Short-Term Studies1. The Journal of nutrition, 141(11), 1982-1988.
• Teng, H., & Chen, L. (2019). Polyphenols and bioavailability: An update. Critical reviews in food science and nutrition, 59(13), 2040-2051.
• Krikorian, R., Nash, T.A., Shidler, M.D., Shukitt-Hale, B., Joseph, J.A. (2010a). Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br J Nutr., 103(05), 730-4.
• Krikorian, R., Shidler, M.D., Nash, T.A., Kalt. W., Vinqvist-Tymchuk, M.R., Shukitt-Hale, B., Joseph, J.A. (2010b). Blueberry supplementation improves memory in older adults. J Agric Food Chem., 58(7), 3996-4000.
• Bowtell, J. L., Aboo-Bakkar, Z., Conway, M. E., Adlam, A. L. R., & Fulford, J. (2017). Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Applied Physiology, Nutrition, and Metabolism, 42(7), 773-779.
• Miller, M.G., Hamilton, D.A., Joseph, J.A. & Shukitt-Hale, B. (2018). Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. Eur. J. Nutr., 57, 1169–1180.
• Whyte, A. R., Cheng, N., Fromentin, E., & Williams, C. M. (2018). A Randomized, DoubleBlinded, Placebo-Controlled Study to Compare the Safety and Efficacy of Low Dose Enhanced Wild Blueberry Powder and Wild Blueberry Extract (ThinkBlue™) in Maintenance of Episodic and Working Memory in Older Adults. Nutrients, 10(6), 660.
• Whyte, A. R., & Williams, C. M. (2015). Effects of a single dose of a flavonoid-rich blueberry drink on memory in 8 to 10 y old children. Nutrition, 31(3), 531-534.
• Whyte, A. R., Schafer, G., & Williams, C. M. (2016). Cognitive effects following acute wild blueberry supplementation in 7-to 10-year-old children. European Journal of Nutrition, 55(6), 2151-2162.
• Whyte, A. R., Schafer, G., & Williams, C. M. (2017). The effect of cognitive demand on performance of an executive function task following wild blueberry supplementation in 7 to 10 years old children. Food & Function, 8(11), 4129-4138.
• Whyte, A. R., Lamport, D. J., Schafer, G., & Williams, C. M. (2020). The cognitive effects of an acute wild blueberry intervention on 7-to 10-year-olds using extended memory and executive function task batteries. Food & Function, 11(5), 4793-4801.
• Barfoot, K.L., May, G., Lamport, D.J., Ricketts, J., Riddell, P. M., & Williams, C. M. (2019). The effects of acute wild blueberry supplementation on the cognition of 7–10-year-old schoolchildren. Eur J Nutr 58, 2911–2920.
• Pase, M. P., Scholey, A. B., Pipingas, A., Kras, M., Nolidin, K., Gibbs, A., ... & Stough, C. (2013). Cocoa polyphenols enhance positive mood states but not cognitive performance: a randomized, placebo-controlled trial. Journal of psychopharmacology, 27(5), 451-458.
• Khalid, S., Barfoot, K. L., May, G., Lamport, D. J., Reynolds, S. A., & Williams, C. M. (2017). Effects of acute blueberry flavonoids on mood in children and young adults. Nutrients, 9(2), 158.
• Fisk, J., Khalid, S., Reynolds, S. A., & Williams, C. M. (2020). Effect of 4 weeks daily wild blueberry supplementation on symptoms of depression in adolescents. British Journal of Nutrition, 1-8.
• Rodriguez-Mateos, A., Rendeiro, C., Bergillos-Meca, T., Tabatabaee, S., George, T. W., Heiss, C., & Spencer, J. P. (2013). Intake and time dependence of blueberry flavonoid– induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity–. The American Journal of Clinical Nutrition, 98(5), 1179-1191.
• Rodriguez-Mateos, A., Feliciano, R. P., Cifuentes-Gomez, T., & Spencer, J. P. E. (2016). Bioavailability of wild blueberry (poly)phenols at different levels of intake. Journal of Berry Research, 6(2), 137–148.
• Feliciano, R. P., Istas, G., Heiss, C., & Rodriguez-Mateos, A. (2016). Plasma and urinary phenolic profiles after acute and repetitive intake of wild blueberry. Molecules, 21(9), 1120.
• Youdim, K. A., Shukitt-Hale, B., & Joseph, J. A. (2004). Flavonoids and the brain: Interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radical Biology and Medicine, 37(11), 1683–1693.
• Vauzour, D. (2012). Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxidative medicine and cellular longevity, 914273.
• Andres-Lacueva, C., Shukitt-Hale, B., Galli, R.L., Jauregui, O., Lamuela-Raventos, R.M., Joseph, J.A. (2005). Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutritional Neuroscience, 8(2), 111-20.
• Figueira, I., Garcia, G., Pimpão, R. C., Terrasso, A. P., Costa, I., Almeida, A. F., ... & Filipe, A. (2017). Polyphenols journey through blood-brain barrier towards neuronal protection. Scientific reports, 7(1), 1-16.
• Figueira, I., Tavares, L., Jardim, C., Costa, I., Terrasso, A. P., Almeida, A. F., ... & McDougall, G. J. (2019). Blood–brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study. European journal of nutrition, 58(1), 113-130.
• Czank, C., Cassidy, A., Zhang, Q., Morrison, D.J., Preston, T., Kroon, P.A., Botting, N.P. and Kay, C.D. (2013). Human metabolism and elimination of the anthocyanin, cyanidin-3- glucoside: A (13)C-tracer study. Am J Clin Nutr, 97, 995-1003.
• Nurmi, T., Mursu, J., Heinonen, M., Nurmi, A., Hiltunen, R. & Voutilainen, S. (2009). Metabolism of berry anthocyanins to phenolic acids in humans. J. Agric. Food Chem., 57, 2274–2281.
• Vitaglione, P., Donnarumma, G., Napolitano, A., Galvano, F., Gallo, A., Scalfi, L. & Fogliano, V. (2007). Protocatechuic acid is the major human metabolite of cyanidinglucosides. J Nutr., 137, 2043-8.
• De Ferrars, R.M., Czank, C., Zhang, Q., Botting, N.P., Kroon, P.A., Cassidy, A. and Kay, C.D. (2014). The pharmacokinetics of anthocyanins and their metabolites in humans. Br. J. Pharmacol. 171, 3268–3282.
• Pimpao, R. C., Ventura, M. R., Ferreira, R. B., Williamson, G., & Santos, C. N. (2015). Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit purée. British Journal of Nutrition, 113(3), 454-463.
• Rodriguez-Mateos, A., Vauzour, D., Krueger, C. G., Shanmuganayagam, D., Reed, J., Calani, L., ... & Crozier, A. (2014b). Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Archives of Toxicology, 88(10), 1803-1853.
• Rodriguez-Mateos, A., Istas, G., Boschek, L., Feliciano, R. P., Mills, C. E., Boby, C., ... & Heiss, C. (2019). Circulating anthocyanin metabolites mediate vascular benefits of blueberries: insights from randomized controlled trials, metabolomics, and nutrigenomics. The Journals of Gerontology: Series A, 74(7), 967-976.
• Spencer, J., Abd El Mohsen, M., Minihane, A., & Mathers, J. (2008). Biomarkers of the intake of dietary polyphenols: Strengths, limitations and application in nutrition research. British Journal of Nutrition, 99(1), 12-22.
• Lezak, M.D. (2004). Neuropsychological Assessment. Oxford University Press, USA.
• Hughes, A.A., & Kendall, P.C. (2009). Psychometric Properties of the Positive and Negative Affect Scale for Children (PANAS-C) in Children with Anxiety Disorders. Child Psychiatry Hum. Dev., 3, 343–352.
• Elliott, C. D., Murray, D. J., & Pearson, L. S. (1979). British Ability Scales Windsor, England.
• Elliott, C. D., Smith, P., & McCullock, K. (1997). British Abilities Scale (BAS II) Technical Manual. Windsor, United Kingdom: nferNelson.
• Elliott, CD, Smith, P., & McCullogh, K. (2011). BAS-II: scales of intellectual aptitudes . TORCH.
• Bell, L., Lamport, D. J., Field, D. T., Butler, L. T., & Williams, C. M. (2018). Practice effects in nutrition intervention studies with repeated cognitive testing. Nutrition and healthy aging, 4(4), 309-322.
• Feliciano, R. P., Boeres, A., Massacessi, L., Istas, G., Ventura, M. R., dos Santos, C. N., ... & Rodriguez-Mateos, A. (2016a). Identification and quantification of novel cranberry-derived plasma and urinary (poly) phenols. Archives of biochemistry and biophysics, 599, 31-41.
• Hanhineva, K., Lankinen, M. A., Pedret, A., Schwab, U., Kolehmainen, M., Paananen, J., ... & Uusitupa, M. (2014). Nontargeted Metabolite Profiling Discriminates Diet-Specific Biomarkers for Consumption of Whole Grains, Fatty Fish, and Bilberries in a Randomized Controlled Trial–3. The Journal of nutrition, 145(1), 7-17.
• Vetrani, C., Rivellese, A.A., Annuzzi, G., Adiels, M., Boren, J., Mattila, I., Oresic, M. & Aura, A.M. (2016). Metabolic transformations of dietary polyphenols: Comparison between in vitro colonic and hepatic models and in vivo urinary metabolites. J. Nutr. Biochem., 33, 111–118.
• Basu, A., Rhone, M., Lyons, T.J. (2010). Berries: emerging impact on cardiovascular health. Nutr Rev, 68(3), 168-77.
• Manach, C., Milenkovic, D., Van de Wiele, T., Rodriguez‐Mateos, A., de Roos, B., Garcia‐Conesa, M. T., ... & Morand, C. (2017). Addressing the inter‐individual variation in response to consumption of plant food bioactives: towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Molecular nutrition & food research, 61(6), 1600557.
• Vitaglione, P., Sforza, S., Galaverna, G., Ghidini, C., Caporaso, N., Vescovi, P.P., Fogliano, V. & Marchelli, R. (2005). Bioavailability of trans-resveratrol from red wine in humans. Mol Nutr Food Res., 49, 495–504.
• Health Survey for England 2016. (2017). National Statistics. Accessed on 05/07/2018.
• FooDB database. (2019). Compound Isoferulic acid (FDB002700). www.foodb.ca. Last accessed 02/03/2021.
• Yapo, E. S., Kouakou, H. T., Kouakou, L. K., Kouadio, J. Y., Kouamé, P., & Mérillon, J. M. (2011). Phenolic profiles of pineapple fruits (Ananas comosus L. Merrill) influence of the origin of suckers. Australian Journal of Basic and Applied Sciences, 5(6), 1372-1378.
• Rock’s Drinks. (2021). Our drinks, Squash. www.rocksdrinks.co.uk/Our-Drinks/Squash. Last accessed 02/03/2021.
• Carregosa, D., Carecho, R., Figueira, I., & Santos, C.N. (2020).Low-Molecular Weight Metabolites from Polyphenols as Effectors for Attenuating Neuroinflammation.
o Journal of Agricultural and Food Chemistry, 68 (7), 1790-1807