Accessibility navigation


Items where Division is "Centre for the Mathematics of Planet Earth (CMPE)"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
[tool] Batch List
Group by: Date | Creators/Editors | Item Type | No Grouping
Jump to: A | B | C | D | E | F | G | H | I | J | K | L | M | O | P | R | S | T | V | W | Z
Number of items at this level: 112.

A

Abdelwahab, S., Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 and Abraham, A. (2016) Neuro-fuzzy risk prediction model for computational grids. In: Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015, Sep 9, 2015 - Sep 11, 2015, Paris - Villejuif, France, pp. 127-136. doi: https://doi.org/10.1007/978-3-319-29504-6_13

Amaradio, M. N., Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192, Jansen, G., Gulisano, M., Costanza, J. and Nicosia, G. (2022) Pareto optimal metabolic engineering for the growth-coupled overproduction of sustainable chemicals. Biotechnology and Bioengineering. ISSN 0006-3592 doi: https://doi.org/10.1002/bit.28103 (In Press)

B

Baladi, V., Kuna, T. and Lucarini, V. (2017) Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables. Nonlinearity, 30 (3). 1204. ISSN 1361-6544 doi: https://doi.org/10.1088/1361-6544/aa5b13

Bandyopadhyay, D., Dasgupta, K., Mandal, J. K., Dutta, P., Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 and Snášel, V. (2014) A framework of secured and bio-inspired image steganography using chaotic encryption with genetic algorithm optimization (CEGAO). In: Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA, 23-25 Jun 2014, Ostrava, Czech Republic, pp. 271-280. doi: https://doi.org/10.1007/978-3-319-08156-4_27

Basterrech, S. and Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 (2016) Temporal learning using echo state network for human activity recognition. In: 2016 Third European Network Intelligence Conference (ENIC), 5-7 Sep 2016, Wrocław, Poland, pp. 217-223. doi: https://doi.org/10.1109/ENIC.2016.039

Berner, J., Achatz, U., Batte, L., Bengtsson, L., De La Camara, A., Christensen, H. M., Colangeli, M., Coleman, D. R. B., Crommelin, D., Dolaptchiev, S. I., Franzke, C. L. E., Friederichs, P., Imkeller, P., Jarvinen, H., Juricke, S., Kitsios, V., Lott, F., Lucarini, V., Mahajan, S., Palmer, T. N., Penland, C., Sakradzija, M., Von Storch, J.-S., Weisheimer, A., Weniger, M., Williams, P. D. and Yano, J.-I. (2017) Stochastic parameterization: towards a new view of weather and climate models. Bulletin of the American Meteorological Society, 98 (3). pp. 565-588. ISSN 1520-0477 doi: https://doi.org/10.1175/BAMS-D-15-00268.1

Bielik, M., Schneider, S., Kuliga, S., Griego, D., Ojha, V., König, R., Schmitt, G. and Donath, D. (2019) Examining trade-offs between social, psychological, and energy potential of urban form. ISPRS International Journal of Geo-Information, 8 (2). 52. ISSN 2220-9964 doi: https://doi.org/10.3390/ijgi8020052

Biferale, L., Cencini, M., De Pietro, M., Gallavotti, G. and Lucarini, V. (2018) Equivalence of nonequilibrium ensembles in turbulence models. Physical Review E, 98 (1). 012202. ISSN 2470-0053 doi: https://doi.org/10.1103/PhysRevE.98.012202

Bodai, T., Drótos, G., Herein, M., Lunkeit, F. and Lucarini, V. (2020) The forced response of the El Niño–Southern Oscillation-Indian monsoon teleconnection in ensembles of Earth System Models. Journal of Climate, 33. pp. 2163-2182. ISSN 1520-0442 doi: https://doi.org/10.1175/JCLI-D-19-0341.1

Boschi, R. and Lucarini, V. (2019) Water pathways for the Hindu-Kush-Himalaya and analysis of three flood events. Atmosphere, 10 (9). 489. ISSN 2073-4433 doi: https://doi.org/10.3390/atmos10090489

Bożejko, M., da Silva, J. L., Kuna, T. and Lytvynov, E. (2018) Approximation of a free Poisson process by systems of freely independent particles. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 21 (3). 1850020. ISSN 1793-6306 doi: https://doi.org/10.1142/s0219025718500200

Bröcker, J. (2021) Existence and uniqueness for variational data assimilation in continuous time. Mathematical Control & Related Fields. ISSN 2156-8472 doi: https://doi.org/10.3934/mcrf.2021050

Bröcker, J. (2021) Testing the reliability of forecasting systems. Journal of Applied Statistics. ISSN 1360-0532 doi: https://doi.org/10.1080/02664763.2021.1981833

Bódai, T., Lucarini, V. and Lunkeit, F. (2020) Can we use linear response theory to assess geoengineering strategies? Chaos: An Interdisciplinary Journal of Nonlinear Science, 30 (2). 023124. ISSN 1089-7682 doi: https://doi.org/10.1063/1.5122255

C

Carlu, M., Ginelli, F., Lucarini, V. and Politi, A. (2019) Lyapunov analysis of multiscale dynamics: the slow bundle of the two-scale Lorenz 96 model. Nonlinear Processes in Geophysics, 26 (2). pp. 73-89. doi: https://doi.org/10.5194/npg-26-73-2019

Chatterjee, T., Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192, Adhikari, M., Banerjee, S., Biswas, U. and Snášel, V. (2014) Design and implementation of an improved datacenter broker policy to improve the QoS of a cloud. In: Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA, 23-25 Jun 2014, Ostrava, Czech Republic, pp. 281-290. doi: https://doi.org/10.1007/978-3-319-08156-4_28

Chen, Y. ORCID: https://orcid.org/0000-0002-2319-6937, Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 (2021) Inferring the instability of a dynamical system from the skill of data assimilation exercises. Nonlinear Processes in Geophysics, 28 (4). pp. 633-649. ISSN 1023-5809 doi: https://doi.org/10.5194/npg-28-633-2021

Conrad, F. and Kuna, T. (2012) A note on an integration by parts formula for the generators of uniform translations on configuration space. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 15 (4). 1250028. ISSN 0219-0257 doi: https://doi.org/10.1142/S0219025712500282

Cullen, M. J. P., Kuna, T., Pelloni, B. and Wilkinson, M. (2019) The Stability Principle and global weak solutions of the free surface semi-geostrophic equations in geostrophic coordinates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475 (2229). 20180787. ISSN 1471-2946 doi: https://doi.org/10.1098/rspa.2018.0787

D

Da Silva, J. L. and Kuna, T. (2012) Decay to equilibrium for jump processes with heavy tails. International Journal of Modern Physics: Conference Series, 17. pp. 130-139. ISSN 2010-1945 doi: https://doi.org/10.1142/S2010194512008021

De Cruz, L., Schubert, S., Demaeyer, J., Lucarini, V. and Vannitsem, S. (2018) Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models. Nonlinear Processes in Geophysics, 25 (2). pp. 387-412. ISSN 1607-7946 doi: https://doi.org/10.5194/npg-25-387-2018

E

Eyring, V., Bock, L., Lauer, A., Righi, M., Schlund, M., Andela, B., Arnone, E., Bellprat, O., Brötz, B., Caron, L.-P., Carvalhais, N., Cionni, I., Cortesi, N., Crezee, B., Davin, E., Davini, P., Debeire, K., de Mora, L., Deser, C., Docquier, D., Earnshaw, P., Ehbrecht, C., Gier, B. K., Gonzalez-Reviriego, N., Goodman, P., Hagemann, S., Hardiman, S., Hassler, B., Hunter, A., Kadow, C., Kindermann, S., Koirala, S., Koldunov, N. V., Lejeune, Q., Lembo, V., Lovato, T., Lucarini, V., Massonnet, F., Müller, B., Pandde, A., Pérez-Zanón, N., Phillips, A., Predoi, V., Russell, J., Sellar, A., Serva, F., Stacke, T., Swaminathan, R., Torralba, V., Vegas-Regidor, J., von Hardenberg, J., Weigel, K. and Zimmermann, K. (2020) Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geoscientific Model Development Discussions, 13 (7). pp. 3383-3438. ISSN 1991-962X doi: https://doi.org/10.5194/gmd-13-3383-2020

F

Faranda, D., Alberti, T., Arutkin, M., Lembo, V. and Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 (2021) Interrupting vaccination policies can greatly spread SARS-CoV-2 and enhance mortality from COVID-19 disease: the AstraZeneca case for France and Italy. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31 (4). 041105. ISSN 1089-7682 doi: https://doi.org/10.1063/5.0050887

G

Galfi, V. M., Bodai, T. and Lucarini, V. (2017) Convergence of extreme value statistics in a two-layer quasi-geostrophic atmospheric model. Complexity, 2017. 5340858. ISSN 1076-2787 doi: https://doi.org/10.1155/2017/5340858

Galfi, V. M., Lucarini, V. and Wouters, J. (2019) A large deviation theory-based analysis of heat waves and cold spells in a simplified model of the general circulation of the atmosphere. Journal of Statistical Mechanics: Theory and Experiment. 033404. ISSN 1742-5468 doi: https://doi.org/10.1088/1742-5468/ab02e8

Galfi, V. M., Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471, Ragone, F. and Wouters, J. (2021) Applications of large deviation theory in geophysical fluid dynamics and climate science. Rivista del Nuovo Cimento. ISSN 1826-9850 doi: https://doi.org/10.1007/s40766-021-00020-z

Gelbrecht, M., Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471, Boers, N. and Kurths, J. (2021) Analysis of a bistable climate toy model with physics-based machine learning methods. The European Physical Journal Special Topics. ISSN 1951-6355 doi: https://doi.org/10.1140/epjs/s11734-021-00175-0

Ghil, M. and Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 (2020) The physics of climate variability and climate change. Reviews of Modern Physics, 92 (3). 035002. ISSN 0034-6861 doi: https://doi.org/10.1103/RevModPhys.92.035002

Goldstein, S., Kuna, T., Lebowitz, J. L. and Speer, E. R. (2017) Translation invariant extensions of finite volume measures. Journal of Statistical Physics, 166 (3-4). pp. 765-782. ISSN 0022-4715 doi: https://doi.org/10.1007/s10955-016-1595-8

Gomez-Leal, I., Kaltenegger, L., Lucarini, V. and Lunkeit, F. (2018) Climate sensitivity to carbon dioxide and moist greenhouse threshold of earth-like planets under an increasing solar forcing. The Astrophysical Journal, 869 (2). 129. ISSN 0004-637X doi: https://doi.org/10.3847/1538-4357/aaea5f

Gritsun, A. and Lucarini, V. (2017) Fluctuations, response, and resonances in a simple atmospheric model. Physica D: Nonlinear Phenomena, 349. pp. 62-76. ISSN 0167-2789 doi: https://doi.org/10.1016/j.physd.2017.02.015

Gómez-Leal, I., Kaltenegger, L., Lucarini, V. and Lunkeit, F. (2019) Climate sensitivity to ozone and its relevance on the habitability of Earth-like planets. Icarus, 321. pp. 608-618. ISSN 0019-1035 doi: https://doi.org/10.1016/j.icarus.2018.11.019

H

Hasson, S., Böhner, J. and Lucarini, V. (2017) Prevailing climatic trends and runoff response from Hindukush–Karakoram–Himalaya, upper Indus Basin. Earth System Dynamics, 8 (2). pp. 337-355. ISSN 2190-4987 doi: https://doi.org/10.5194/esd-8-337-2017

Hu, G., Bodai, T. and Lucarini, V. (2019) Effects of stochastic parametrization on extreme value statistics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (8). 083102. ISSN 1089-7682 doi: https://doi.org/10.1063/1.5095756

Hussein, M., Law, C. ORCID: https://orcid.org/0000-0003-0686-1998 and Fraser, I. (2021) An analysis of food demand in a fragile and insecure country: Somalia as a case study. Food Policy, 101. 102092. ISSN 0306-9192 doi: https://doi.org/10.1016/j.foodpol.2021.102092

I

Infusino, M., Kuna, T. and Rota, A. (2014) The full infinite dimensional moment problem on semi-algebraic sets of generalized functions. Journal of Functional Analysis, 267 (5). pp. 1382-1418. ISSN 0022-1236 doi: https://doi.org/10.1016/j.jfa.2014.06.012

Infusino, M., Kuna, T., Lebowitz, J. L. and Speer, E. R. (2017) The truncated moment problem on N0. Journal of Mathematical Analysis and Applications, 452 (1). pp. 443-468. ISSN 0022-247X doi: https://doi.org/10.1016/j.jmaa.2017.02.060

Infusino, M. and Kuna, T. (2020) The full moment problem on subsets of probabilities and point configurations. Journal of Mathematical Analysis and Applications, 483 (1). 123551. ISSN 0022-247X doi: https://doi.org/10.1016/j.jmaa.2019.123551

J

Jaikumar, P., Vandaele, R. and Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 (2021) Transfer learning for instance segmentation of waste bottles using Mask R-CNN algorithm. In: International Conference on Intelligent Systems Design and Applications, 12-15 December 2020, https://link.springer.com/chapter/10.1007%2F978-3-030-71187-0_13, pp. 140-149. doi: https://doi.org/10.1007/978-3-030-71187-0_13

Jansen, S., Kuna, T. and Tsagkarogiannis, D. (2021) Lagrange inversion and combinatorial species with uncountable color palette. Annales Henri Poincare, 22. pp. 1499-1534. ISSN 1424-0661 doi: https://doi.org/10.1007/s00023-020-01013-0

K

Kondratiev, Y. G., Kuna, T. and Ohlerich, N. (2008) Selection-mutation balance models with epistatic selection. Condensed Matter Physics, 11 (2). pp. 283-291. ISSN 1607-324X

Kondratiev, Y. G., Kuna, T. and Ohlerich, N. (2013) Spectral gap for Glauber type dynamics for a special class of potentials. Electronic Journal of Probability, 18. 42. ISSN 1083-6489 doi: https://doi.org/10.1214/EJP.v18-2260

Kondratiev, Y. G., Kuna, T. and Oliveira, M.J. (2008) Extension of explicit formulas in Poissonian white noise analysis using harmonic analysis on configuration spaces. Condensed Matter Physics, 11 (2). pp. 237-246. ISSN 1607-324X

Kondratiev, Y. G., Kuna, T. and Lytvynov, E. (2015) A moment problem for random discrete measures. Stochastic Processes and their Applications, 125 (9). pp. 3541-3569. ISSN 0304-4149 doi: https://doi.org/10.1016/j.spa.2015.03.007

Kuna, T. and Streit, L. (2007) The representation of conditional expectations of non-Gaussian noise. Communications on Stochastic Analysis, 1 (1). pp. 49-56. ISSN ISSN 0973-9599

Kuna, T. and Tsagkarogiannis, D. (2018) Convergence of density expansions of correlation functions and the Ornstein-Zernike equation. Annales Henri Poincare, 19 (4). pp. 1115-1150. ISSN 1424-0661 doi: https://doi.org/10.1007/s00023-018-0655-9

Kuna, T., Caglioti, E. and Infusino, M. (2016) Translation invariant realizability problem on the d-dimensional lattice: an explicit construction. Electronic Communications in Probability, 21. 45. ISSN 1083-589X doi: https://doi.org/10.1214/16-ECP4620

Kuna, T., Lebowitz, J. and Speer, E. (2011) Necessary and sufficient conditions for realizability of point processes. Annals of Applied Probability, 21 (4). pp. 1253-1281. ISSN 1050-5164 doi: https://doi.org/10.1214/10-AAP703

Kuna, T., Lebowitz, J.L. and Speer, E.R. (2007) Realizability of Point Processes. Journal of Statistical Physics, 129 (3). pp. 417-439. ISSN 0022-4715 doi: https://doi.org/10.1007/s10955-007-9393-y

L

Lembo, V., Fabiano, F., Galfi, V. M., Graversen, R., Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 and Messori, G. (2022) Meridional energy transport extremes and the general circulation of Northern Hemisphere mid-latitudes: dominant weather regimes and preferred zonal wavenumbers. Weather and Climate Dynamics. ISSN 2698-4024 (In Press)

Lembo, V., Lucarini, V. and Ragone, F. (2020) Beyond forcing scenarios: predicting climate change through response operators in a coupled general circulation model. Scientific Reports, 10 (1). 8668. ISSN 2045-2322 doi: https://doi.org/10.1038/s41598-020-65297-2

Lembo, V., Lunkeit, F. and Lucarini, V. (2019) TheDiaTo (v1.0) – a new diagnostic tool for water, energy and entropy budgets in climate models. Geoscientific Model Development, 12 (8). pp. 3805-3834. ISSN 1991-9603 doi: https://doi.org/10.5194/gmd-12-3805-2019

Lembo, V., Messori, G., Graversen, R. and Lucarini, V. (2019) Spectral decomposition and extremes of atmospheric meridional energy transport in the Northern Hemisphere midlatitudes. Geophysical Research Letters. ISSN 0094-8276 doi: https://doi.org/10.1029/2019GL082105

Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 (2020) Introduction to the special issue on the statistical mechanics of climate. Journal of Statistical Physics, 179 (5-6). Springer. doi: https://doi.org/10.1007/s10955-020-02605-0

Lucarini, V. (2018) Revising and extending the linear response theory for statistical mechanical systems: evaluating observables as predictors and predictands. Journal of Statistical Physics, 173 (6). pp. 1698-1721. ISSN 0022-4715 doi: https://doi.org/10.1007/s10955-018-2151-5

Lucarini, V. (2019) Stochastic resonance for nonequilibrium systems. Physical Review E, 100 (6). 062124. ISSN 2470-0045 doi: https://doi.org/10.1103/PhysRevE.100.062124

Lucarini, V. and Bodai, T. (2017) Edge states in the climate system: exploring global instabilities and critical transitions. Nonlinearity, 30 (7). R32-R66. ISSN 1361-6544 doi: https://doi.org/10.1088/1361-6544/aa6b11

Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 and Bodai, T. (2020) Global stability properties of the climate: melancholia states, invariant measures, and phase transitions. Nonlinearity, 33 (9). R59-R92. ISSN 1361-6544 doi: https://doi.org/10.1088/1361-6544/ab86cc

Lucarini, V. and Bódai, T. (2019) Transitions across Melancholia States in a climate model: reconciling the deterministic and stochastic points of view. Physical Review Letters, 122 (15). 158701. ISSN 1079-7114 doi: https://doi.org/10.1103/PhysRevLett.122.158701

Lucarini, V. and Gritsun, A. (2020) A new mathematical framework for atmospheric blocking events. Climate Dynamics, 54 (1-2). pp. 575-598. ISSN 0930-7575 doi: https://doi.org/10.1007/s00382-019-05018-2

Lucarini, V. and Wouters, J. (2017) Response formulae for n-point correlations in statistical mechanical systems and application to a problem of coarse graining. Journal of Physics A: Mathematical and Theoretical, 50 (35). 355003. ISSN 1751-8113 doi: https://doi.org/10.1088/1751-8121/aa812c

Lucarini, V., Faranda, D., Freitas, A. C. G. M. M., Freitas, J. M. M. d., Holland, M., Kuna, T., Nicol, M., Todd, M. and Vaienti, S., eds. (2016) Extremes and recurrence in dynamical systems. Pure and applied mathematics: a Wiley series of texts, monographs, and tracts. Wiley, Chichester, pp312. ISBN 9781118632192 doi: https://doi.org/10.1002/9781118632321

Lucarini, V., Faranda, D., Wouters, J. and Kuna, T. (2014) Towards a general theory of extremes for observables of chaotic dynamical systems. Journal of Statistical Physics, 154 (3). pp. 723-750. ISSN 0022-4715 doi: https://doi.org/10.1007/s10955-013-0914-6

Lucarini, V., Kuna, T., Wouters, J. and Faranda, D. (2012) Relevance of sampling schemes in light of Ruelle's linear response theory. Nonlinearity, 25 (5). p. 1311. ISSN 1361-6544 doi: https://doi.org/10.1088/0951-7715/25/5/1311

Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471, Pavliotis, G. A. and Zagli, N. (2020) Response theory and phase transitions for the thermodynamic limit of interacting identical systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. ISSN 1364-5021 doi: https://doi.org/10.1098/rspa.2020.0688

Lucarini, V., Ragone, F. and Lunkeit, F. (2017) Predicting climate change using response theory: global averages and spatial patterns. Journal of Statistical Physics, 166 (3-4). pp. 1036-1064. ISSN 0022-4715 doi: https://doi.org/10.1007/s10955-016-1506-z

Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471, Serdukova, L. and Margazoglou, G. (2022) Lévy-noise versus Gaussian-noise-induced transitions in the Ghil-Sellers energy balance model. Nonlinear Processes in Geophysics, 29. pp. 183-205. ISSN 1023-5809 doi: https://doi.org/10.5194/npg-29-183-2022

M

Maiocchi, C. C., Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 and Gritsun, A. (2022) Decomposing the dynamics of the Lorenz 1963 model using unstable periodic orbits: averages, transitions, and quasi-invariant sets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 32. 033129. ISSN 1089-7682 doi: https://doi.org/10.1063/5.0067673

Margazoglou, G., Grafke, T., Laio, A. and Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 (2021) Dynamical landscape and multistability of a climate model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477 (2250). ISSN 1364-5021 doi: https://doi.org/10.1098/rspa.2021.0019

O

Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 and Amban Mishra, D. (2018) Neural tree for estimating the uniaxial compressive strength of rock materials. In: International Conference on Hybrid Intelligent Systems, pp. 1-10. doi: https://doi.org/10.1007/978-3-319-76351-4_1

Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 and Nicosia, G. (2022) Backpropagation neural tree. Neural Networks, 149. ISSN 0893-6080 doi: https://doi.org/10.1016/j.neunet.2022.02.003

Ojha, V. and Nicosia, G. (2020) Multi-objective optimisation of multi-output neural trees. In: IEEE Congress on Evolutionary Computation (IEEE CEC 2020), 19-24 July 2020, Glasgow, Scotland, UK. doi: https://doi.org/10.1109/CEC48606.2020.9185600

Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192, Abraham, A. and Snasel, V. (2016) Ensemble of heterogeneous flexible neural tree for the approximation and feature-selection of Poly (Lactic-co-glycolic Acid) micro-and nanoparticle. In: Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015, Sep 9, 2015 - Sep 11, 2015, Paris - Villejuif, France, pp. 155-165. doi: https://doi.org/10.1007/978-3-319-29504-6_16

Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192, Abraham, A. and Snasel, V. (2016) Metaheuristic tuning of type-II fuzzy inference systems for data mining. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 25-29 Jul 2016, Vancouver, Canada, pp. 610-617. doi: https://doi.org/10.1109/FUZZ-IEEE.2016.7737743

Ojha, V., Abraham, A. and Snášel, V. (2019) Heuristic design of fuzzy inference systems: a review of three decades of research. Engineering Applications of Artificial Intelligence, 85. pp. 845-864. ISSN 0952-1976 doi: https://doi.org/10.1016/j.engappai.2019.08.010

Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192, Jackowski, K., Abraham, A. and Snásel, V. (2014) Feature selection and ensemble of regression models for predicting the protein macromolecule dissolution profile. In: 2014 Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC 2014), 30 July-1 Aug. 2014, Porto, Portugal, pp. 121-126. doi: https://doi.org/10.1109/NaBIC.2014.6921864

Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192, Jackowski, K., Snášel, V. and Abraham, A. (2014) Dimensionality reduction and prediction of the protein macromolecule dissolution profile. In: The Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA, 23-25 Jun 2014, Ostrava, Czech Republic, pp. 301-310. doi: https://doi.org/10.1007/978-3-319-08156-4_30

Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192, Jansen, G., Patanè, A., La Magna, A., Romano, V. and Nicosia, G. ORCID: https://orcid.org/0000-0002-0650-3157 (2021) Design and characterization of effective solar cells. Energy Systems. ISSN 1868-3967 doi: https://doi.org/10.1007/s12667-021-00451-x

Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192, Timmis, J. and Nicosia, G. (2022) Assessing ranking and effectiveness of evolutionary algorithm hyperparameters using global sensitivity analysis methodologies. Swarm and Evolutionary Computation, 74. 101130. ISSN 2210-6502 doi: https://doi.org/10.1016/j.swevo.2022.101130

Ojha, V. K., Abraham, A. and Snasel, V. (2017) Metaheuristic design of feedforward neural networks: a review of two decades of research. Engineering Applications of Artificial Intelligence, 60. pp. 97-116. ISSN 0952‐1976 doi: https://doi.org/10.1016/j.engappai.2017.01.013

Ojha, V. K. ORCID: https://orcid.org/0000-0002-9256-1192, Abraham, A. and Snasel, V. (2014) Simultaneous optimization of neural network weights and active nodes using metaheuristics. In: 14th International Conference on Hybrid Intelligent Systems, 14-16 Dec 2014, Kuwait, pp. 248-253. doi: https://doi.org/10.1109/HIS.2014.7086207

Ojha, V. K., Abraham, A. and Snásel, V. (2017) Ensemble of heterogeneous flexible neural trees using multiobjective genetic programming. Applied Soft Computing, 52. pp. 909-924. ISSN 1568-4946 doi: https://doi.org/10.1016/j.asoc.2016.09.035

Ojha, V. K., Abraham, A. and Snášel, V. (2014) ACO for continuous function optimization: a performance analysis. In: 2014 14th International Conference on Intelligent Systems Design and Applications, 28-30 November 2914, Okinawa, Japan, pp. 145-150.

Ojha, V. K., Dutta, P. and Chaudhuri, A. (2017) Identifying hazardousness of sewer pipeline gas mixture using classification methods: a comparative study. Neural Computing and Applications, 28 (6). pp. 1343-1354. ISSN 0941-0643 doi: https://doi.org/10.1007/s00521-016-2443-0

Ojha, V. K., Griego, D., Kuliga, S., Bielik, M., Bus, P., Schaeben, C., Treyer, L., Standfest, M., Schneider, S., König, R., Donath, D. and Schmitt, G. (2019) Machine learning approaches to understand the influence of urban environments on human’s physiological response. Information Sciences, 474. pp. 154-169. ISSN 0020-0255 doi: https://doi.org/10.1016/j.ins.2018.09.061

Ojha, V. K., Schiano, S., Wu, C.-Y., Snásel, V. and Abraham, A. (2018) Predictive modeling of die filling of the pharmaceutical granules using the flexible neural tree. Neural Computing and Applications, 29 (7). pp. 467-481. ISSN 0941-0643 doi: https://doi.org/10.1007/s00521-016-2545-8

Ojha, V. K., Snasel, V. and Abraham, A. (2018) Multiobjective programming for type-2 hierarchical fuzzy inference trees. IEEE Transactions on Fuzzy Systems, 26 (2). pp. 915-936. ISSN 1063-6706 doi: https://doi.org/10.1109/TFUZZ.2017.2698399

Oljača, L., Bröcker, J. and Kuna, T. (2018) Almost sure error bounds for data assimilation in dissipative systems with unbounded observation noise. SIAM Journal on Applied Dynamical Systems, 17 (4). pp. 2882-2914. ISSN 1536-0040 doi: https://doi.org/10.1137/17M1162305

P

Pravin, C. and Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 (2021) A novel ECG signal denoising filter selection algorithm based on conventional neural networks. In: 19th IEEE International Conference on Machine Learning and Applications (ICMLA 2020), 14-17 Dec 2020, Miami, Florida. doi: https://doi.org/10.1109/ICMLA51294.2020.00176

Pravin, C., Martino, I., Nicosia, G. and Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 (2021) Adversarial robustness in deep learning: attacks on fragile neurons. In: 30th International Conference on Artificial Neural Networks, September 14-17, 2021, Bratislava, Slovakia (Online), pp. 16-28. doi: https://doi.org/10.1007/978-3-030-86362-3_2

Prettyman, J., Kuna, T. and Livina, V. (2019) Generalized early warning signals in multivariate and gridded data with an application to tropical cyclones. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (7). 073105. ISSN 1089-7682 doi: https://doi.org/10.1063/1.5093495

Prettyman, J., Kuna, T. and Livina, V. (2018) A novel scaling indicator of early warning signals helps anticipate tropical cyclones. Europhysics Letters, 121 (1). 10002. ISSN 0295-5075 doi: https://doi.org/10.1209/0295-5075/121/10002

R

Ragon, C., Lembo, V., Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471, Verard, C., Kasparian, J. and Brunetti, M. (2022) Robustness of competing climatic states. Journal of Climate, 35 (9). pp. 2769-2784. ISSN 1520-0442 doi: https://doi.org/10.1175/JCLI-D-21-0148.1

Recchia, L. G. ORCID: https://orcid.org/0000-0002-5907-9468, Griffiths, S. D. and Parker, D. J. (2021) Controls on propagation of the Indian monsoon onset in an idealised model. Quarterly Journal of the Royal Meteorological Society. ISSN 1477-870X doi: https://doi.org/10.1002/qj.4165

Ruti, P., Tarasova, O., Keller, J., Carmichael, G., Hov, Ø., Jones, S., Terblanche, D., Anderson-Lefale, C., Barros, A., Bauer, P., Bouchet, V., Brasseur, G., Brunet, G., DeCola, P., Dike, V., Kane, M. D., Gan, C., Gurney, K., Hamburg, S., Hazeleger, W., Jean, M., Johnston, D., Lewis, A., Li, P., Liang, X., Lucarini, V., Lynch, A., Manaenkova, E., Jae-Cheol, N., Ohtake, S., Pinardi, N., Polcher, J., Ritchie, E., Sakya, A. E., Saulo, C., Singhee, A., Sopaheluwakan, A., Steiner, A., Thorpe, A. and Yamaji, M. (2020) Advancing research for seamless Earth system prediction. Bulletin of the American Meteorological Society, 101 (1). E23-E35. ISSN 1520-0477 doi: https://doi.org/10.1175/bams-d-17-0302.1

S

Santos Gutierrez, M. and Lucarini, V. (2020) Response and sensitivity using markov chains. Journal of Statistical Physics, 179 (5-6). pp. 1572-1593. ISSN 0022-4715 doi: https://doi.org/10.1007/s10955-020-02504-4

Santos Gutiérrez, M. ORCID: https://orcid.org/0000-0001-8617-2804, Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471, Chekroun, M. D. ORCID: https://orcid.org/0000-0002-4525-5141 and Ghil, M. ORCID: https://orcid.org/0000-0001-5177-7133 (2021) Reduced-order models for coupled dynamical systems: data-driven methods and the Koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31 (5). 053116. ISSN 1089-7682 doi: https://doi.org/10.1063/5.0039496

Shergill, J. S., Pravin, C. and Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 (2021) Accent and gender recognition from English language speech and audio using signal processing and deep learning. In: International Conference on Hybrid Intelligent Systems, 14-16 Dec 2020, pp. 62-72. doi: https://doi.org/10.1007/978-3-030-73050-5_7

T

Tantet, A., Lucarini, V. and Dijkstra, H. A. (2018) Resonances in a chaotic attractor crisis of the Lorenz Flow. Journal of Statistical Physics, 170 (3). pp. 584-616. ISSN 0022-4715 doi: https://doi.org/10.1007/s10955-017-1938-0

Tantet, A., Lucarini, V., Lunkeit, F. and Dijkstra, H. A. (2018) Crisis of the chaotic attractor of a climate model: a transfer operator approach. Nonlinearity, 31 (5). 2221. ISSN 1361-6544 doi: https://doi.org/10.1088/1361-6544/aaaf42

Taylor, R., Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192, Martino, I. and Nicosia, G. (2021) Sensitivity analysis for deep learning: ranking hyper-parameter influence. In: 33rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI2021), 1-3 NOV 2021, Online. doi: https://doi.org/10.1109/ICTAI52525.2021.00083

Tomasini, U. M. and Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 (2021) Predictors and predictands of linear response in spatially extended systems. European Physical Journal Special Topics. ISSN 1951-6355 doi: https://doi.org/10.1140/epjs/s11734-021-00158-1

V

Vandaele, R., Dance, S. ORCID: https://orcid.org/0000-0003-1690-3338 and Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 (2021) Automated water segmentation and river level detection on camera images using transfer learning. In: 42nd German Conference on Pattern Recognition (DAGM GCPR 2020), 28 Sep - 1 Oct 2020, pp. 232-245. doi: https://doi.org/10.1007/978-3-030-71278-5

Vandaele, R., Dance, S. L. ORCID: https://orcid.org/0000-0003-1690-3338 and Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 (2021) Deep learning for automated river-level monitoring through river camera images: an approach based on water segmentation and transfer learning. Hydrology and Earth System Sciences, 25 (8). pp. 4435-4453. ISSN 1027-5606 doi: https://doi.org/10.5194/hess-25-4435-2021

Vissio, G. and Lucarini, V. (2018) Evaluating a stochastic parametrization for a fast--slow system using the Wasserstein distance. Nonlinear Processes in Geophysics, 25 (2). pp. 413-427. ISSN 1023-5809 doi: https://doi.org/10.5194/npg-25-413-2018

Vissio, G. and Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 (2020) Mechanics and thermodynamics of a new minimal model of the atmosphere. The European Physical Journal Plus, 135 (10). 807. ISSN 2190-5444 doi: https://doi.org/10.1140/epjp/s13360-020-00814-w

Vissio, G. and Lucarini, V. (2018) A proof of concept for scale-adaptive parameterizations: the case of the Lorenz ’96 model. Quarterly Journal of the Royal Meteorological Society, 144 (710). pp. 63-75. ISSN 1477-870X doi: https://doi.org/10.1002/qj.3184

Vissio, G., Lembo, V., Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 and Ghil, M. (2020) Evaluating the performance of climate models based on Wasserstein distance. Geophysical Research Letters, 47 (21). e2020GL089385. ISSN 0094-8276 doi: https://doi.org/10.1029/2020GL089385

W

Ward, B., Pravin, C., Chetcuti, A., Hayashi, Y. and Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 (2021) Classification of musical preference in generation Z through EEG signal processing and machine learning. In: International Conference on Intelligent Systems Design and Applications, 12-15 December 2020, https://link.springer.com/conference/isda, pp. 117-127. doi: https://doi.org/10.1007/978-3-030-71187-0_11

Z

Zagli, N. ORCID: https://orcid.org/0000-0003-4509-1615, Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 and Pavliotis, G. A. ORCID: https://orcid.org/0000-0002-3468-9227 (2021) Spectroscopy of phase transitions for multiagent systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31 (6). 061103. ISSN 1089-7682 doi: https://doi.org/10.1063/5.0053558

Zahid, M., Blender, R., Lucarini, V. and Bramati, M. C. (2017) Return levels of temperature extremes in southern Pakistan. Earth System Dynamics, 8 (4). pp. 1263-1278. ISSN 2190-4987 doi: https://doi.org/10.5194/esd-8-1263-2017

Zjavka, L., Snásel, V., Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 and Pedrycz, W. (2016) A substitution of the general partial differential equation with extended polynomial networks. In: International Joint Conference on Neural Networks (IJCNN), 25-29 Jul 2016, Vancouver, Canada, pp. 4819-4826. doi: https://doi.org/10.1109/IJCNN.2016.7727833

This list was generated on Thu Sep 29 12:29:53 2022 UTC.

Page navigation