Accessibility navigation

A novel antiserum specific to apolipoprotein B-48: application in the investigation of postprandial lipidaemia in humans

Peel, A. S., Zampelas, A., Williams, C. M. and Gould, B. J. (1993) A novel antiserum specific to apolipoprotein B-48: application in the investigation of postprandial lipidaemia in humans. Clinical Science, 85 (5). pp. 521-524. ISSN 0143-5221

Full text not archived in this repository.

Official URL:


1. Apolipoprotein B-48, the transport protein for chylomicrons, is identical with apolipoprotein B-100 for the first 48% of its sequence. No antiserum has yet been reported that can recognize apolipoprotein B-48, but not apolipoprotein B-100. 2. In the present study an antiserum was raised to the C-terminal sequence of apolipoprotein B-48, using specific chemical reactions to ensure that the charged carboxyl group of the C-terminal isoleucine residue was free. In a Western blot the antiserum was shown to bind to a protein band having the characteristics of apolipoprotein B-48, but not to apolipoprotein B-100. 3. In the early evening 11 subjects were given a test meal which contained 40 g of mixed oil and retinyl palmitate. Blood samples were collected over 9 h. Chylomicron-enriched fractions were prepared and analysed for triacylglycerol, retinyl palmitate and apolipoprotein B-48, the latter after separation using SDS/PAGE and visualization by chemiluminescence on a Western blot. Both triacylglycerol and apolipoprotein B-48 showed an early peak at 1 h, which was not seen with retinyl palmitate. All three substances gave a broader peak between 5 and 6 h postprandially. Retinyl palmitate concentrations declined rapidly during the late (6-9 h) postprandial period, but apolipoprotein B-48 concentrations remained elevated. 4. This study has shown that an antiserum has been produced which is specific for apolipoprotein B-48. This has enabled measurement of postprandial concentrations of the protein that revealed features of chylomicron metabolism which have not been reported previously.

Item Type:Article
Divisions:Faculty of Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Human Nutrition Research Group
Interdisciplinary centres and themes > Institute for Cardiovascular and Metabolic Research (ICMR)
ID Code:18970
Publisher:Portland Press

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation