Accessibility navigation


Models agree on forced response pattern of precipitation and temperature extremes

Fischer, E. M., Sedláček, J., Hawkins, E. and Knutti, R. (2014) Models agree on forced response pattern of precipitation and temperature extremes. Geophysical Research Letters, 41 (23). pp. 8554-8562. ISSN 0094-8276

[img]
Preview
Text - Published Version
· Please see our End User Agreement before downloading.

2264Kb

To link to this article DOI: 10.1002/2014GL062018

Abstract/Summary

Model projections of heavy precipitation and temperature extremes include large uncertainties. We demonstrate that the disagreement between individual simulations primarily arises from internal variability, whereas models agree remarkably well on the forced signal, the change in the absence of internal variability. Agreement is high on the spatial pattern of the forced heavy precipitation response showing an intensification over most land regions, in particular Eurasia and North America. The forced response of heavy precipitation is even more robust than that of annual mean precipitation. Likewise, models agree on the forced response pattern of hot extremes showing the greatest intensification over midlatitudinal land regions. Thus, confidence in the forced changes of temperature and precipitation extremes in response to a certain warming is high. Although in reality internal variability will be superimposed on that pattern, it is the forced response that determines the changes in temperature and precipitation extremes in a risk perspective.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Walker Institute
Faculty of Science > School of Mathematical, Physical and Computational Sciences > NCAS
Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:40257
Publisher:American Geophysical Union

Download Statistics for this item.

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation