[1] P. Carmeliet, R.K. Jain, Angiogenesis in cancer and other diseases., Nature. 407 (2000) 249–257. doi:10.1038/35025220.
[2] D. Hanahan, J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis, Cell. 86 (1996) 353–364. doi:10.1016/S0092-8674(00)80108-7.
[3] D. Hanahan, The Hallmarks of Cancer, Cell. 100 (2000) 57–70. doi:10.1016/S0092-8674(00)81683-9.
[4] D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation, Cell. 144 (2011) 646–674. doi:10.1016/j.cell.2011.02.013.
[5] N. Ferrara, R.S. Kerbel, Angiogenesis as a therapeutic target., Nature. 438 (2005) 967–974. doi:10.1038/nature04483.
[6] D. Ravishankar, A.K. Rajora, F. Greco, H.M.I. Osborn, Flavonoids as prospective compounds for anti-cancer therapy., Int. J. Biochem. Cell Biol. 45 (2013) 2821–31. doi:10.1016/j.biocel.2013.10.004.
[7] A.M. Senderowicz, Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials., Invest. New Drugs. 17 (1999) 313–320.
[8] S. Burdette-Radoux, R.G. Tozer, R.C. Lohmann, I. Quirt, D.S. Ernst, W. Walsh, et al., Phase II trial of flavopiridol, a cyclin dependent kinase inhibitor, in untreated metastatic malignant melanoma, Invest. New Drugs. 22 (2004) 315–322. doi:10.1023/B:DRUG.0000026258.02846.1c.
[9] J.A. Jones, A.S. Rupert, M. Poi, M.A. Phelps, L. Andritsos, R. Baiocchi, et al., Flavopiridol can be safely administered using a pharmacologically derived schedule and demonstrates activity in relapsed and refractory non-Hodgkin’s lymphoma, Am. J. Hematol. 89 (2014) 19–24. doi:10.1002/ajh.23568.
[10] C. Loguercio, D. Festi, Silybin and the liver: from basic research to clinical practice., World J. Gastroenterol. 17 (2011) 2288–2301. doi:10.3748/wjg.v17.i18.2288.
[11] D. Ferry, A. Smith, J. Malkhandi, Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition., Clin. Cancer Res. (1996) 659–668. http://clincancerres.aacrjournals.org/content/2/4/659.short (accessed October 7, 2014).
[12] P.J. Mulholland, D.R. Ferry, D. Anderson, S.A. Hussain, A.M. Young, J.E. Cook, et al., Pre-clinical and clinical study of QC12, a water-soluble, pro-drug of quercetin, Ann. Oncol. 12 (2001) 245–248. doi:10.1023/A:1008372017097.
[13] P. Pratheeshkumar, A. Budhraja, Y.O. Son, X. Wang, Z. Zhang, S. Ding, et al., Quercetin Inhibits Angiogenesis Mediated Human Prostate Tumor Growth by Targeting VEGFR- 2 Regulated AKT/mTOR/P70S6K Signaling Pathways, PLoS One. 7 (2012). doi:10.1371/journal.pone.0047516.
[14] P. Pratheeshkumar, Y.-O. Son, A. Budhraja, X. Wang, S. Ding, L. Wang, et al., Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis., PLoS One. 7 (2012) e52279. doi:10.1371/journal.pone.0052279.
[15] N. Ferrara, H.-P. Gerber, J. LeCouter, The biology of VEGF and its receptors., Nat. Med. 9 (2003) 669–676. doi:10.1038/nm0603-669.
[16] J.J. Wedge SR, VEGF receptor tyrosine kinase inhibitors for the treatment of cancer, in: Tumor Angiogenes. Basic Mech. Cancer Ther., N, ed., Springer, New York:, 2008: pp. 395–423.
[17] S.A. Eccles, W. Court, L. Patterson, S. Sanderson, In vitro assays for endothelial cell functions related to angiogenesis: proliferation, motility, tubular differentiation, and proteolysis., Methods Mol. Biol. 467 (2009) 159–181. doi:10.1007/978-1-59745-241-0_9.
[18] C.A. Staton, M.W.R. Reed, N.J. Brown, A critical analysis of current in vitro and in vivo angiogenesis assays, Int. J. Exp. Pathol. 90 (2009) 195–221. doi:10.1111/j.1365-2613.2008.00633.x.
[19] L. Lamalice, F. Le Boeuf, J. Huot, Endothelial cell migration during angiogenesis, Circ. Res. 100 (2007) 782–794. doi:10.1161/01.RES.0000259593.07661.1e.
[20] C.-C. Liang, A.Y. Park, J.-L. Guan, In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro., Nat. Protoc. 2 (2007) 329–333. doi:10.1038/nprot.2007.30.
[21] M. Shibuya, Vegf-vegfr signals in health and disease, Biomol. Ther. 22 (2014) 1–9. doi:10.4062/biomolther.2013.113.
[22] X. Li, L. Claesson-Welsh, M. Shibuya, VEGF receptor signal transduction., Methods Enzymol. 443 (2008) 261–284. doi:10.1016/S0076-6879(08)02013-2.
[23] H.I. Ingólfsson, P. Thakur, K.F. Herold, E.A. Hobart, N.B. Ramsey, X. Periole, et al., Phytochemicals perturb membranes and promiscuously alter protein function., ACS Chem. Biol. 9 (2014) 1788–98. doi:10.1021/cb500086e.
[24] R.A. Videira, M.C. Antunes-Madeira, V.M.C. Madeira, Perturbations induced by α- and β-endosulfan in lipid membranes: A DSC and fluorescence polarization study, Biochim. Biophys. Acta - Biomembr. 1419 (1999) 151–163. doi:10.1016/S0005-2736(99)00060-7.
[25] R.L. Biltonen, D. Lichtenberg, The use of differential scanning calorimetry as a tool to characterize liposome preparations, Chem. Phys. Lipids. 64 (1993) 129–142. doi:10.1016/0009-3084(93)90062-8.
[26] D. Bilge, I. Sahin, N. Kazanci, F. Severcan, Interactions of tamoxifen with distearoyl phosphatidylcholine multilamellar vesicles: FTIR and DSC studies, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 130 (2014) 250–256. doi:http://dx.doi.org/10.1016/j.saa.2014.04.027.
[27] B. Pawlikowska-Pawlȩga, H. Dziubińska, E. Król, K. Trȩbacz, A. Jarosz-Wilkołazka, R. Paduch, et al., Characteristics of quercetin interactions with liposomal and vacuolar membranes, Biochim. Biophys. Acta - Biomembr. 1838 (2014) 254–265. doi:10.1016/j.bbamem.2013.08.014.
[28] B. Pawlikowska-Pawlega, W. Ignacy Gruszecki, L. Misiak, R. Paduch, T. Piersiak, B. Zarzyka, et al., Modification of membranes by quercetin, a naturally occurring flavonoid, via its incorporation in the polar head group, Biochim. Biophys. Acta - Biomembr. 1768 (2007) 2195–2204. doi:10.1016/j.bbamem.2007.05.027.
[29] R. Sinha, M. Gadhwal, U. Joshi, S. Srivastava, G. Govil, Modifying effect of quercetin on model biomembranes: Studied by molecular dynamic simulation, DSC and NMR, Int J Curr Pharm Res. 4 (2012) 70–79. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Modifying+effect+of+quercetin+on+model+biomembranes-studied+by+molecular+dynamic+simulation,+DSC+and+NMR#0 (accessed December 30, 2014).
[30] T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays., J. Immunol. Methods. 65 (1983) 55–63. doi:10.1016/0022-1759(83)90303-4.
[31] S.R. Wedge, J. Kendrew, L.F. Hennequin, P.J. Valentine, S.T. Barry, S.R. Brave, et al., AZD2171: A highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer, Cancer Res. 65 (2005) 4389–4400. doi:10.1158/0008-5472.CAN-04-4409.
[32] A. Bagri, L. Berry, B. Gunter, M. Singh, I. Kasman, L.A. Damico, et al., Effects of anti-VEGF treatment duration on tumor growth, tumor regrowth, and treatment efficacy, Clin. Cancer Res. 16 (2010) 3887–3900. doi:10.1158/1078-0432.CCR-09-3100.
[33] M.R. Mancuso, R. Davis, S.M. Norberg, S. O’Brien, B. Sennino, T. Nakahara, et al., Rapid vascular regrowth in tumors after reversal of VEGF inhibition, J. Clin. Invest. 116 (2006) 2610–2621. doi:10.1172/JCI24612.
[34] J. Ma, D.J. Waxman, Combination of antiangiogenesis with chemotherapy for more effective cancer treatment., Mol. Cancer Ther. 7 (2008) 3670–3684. doi:10.1158/1535-7163.MCT-08-0715.
[35] J. Yuan, I.L.K. Wong, T. Jiang, S.W. Wang, T. Liu, B. Jin Wen, et al., Synthesis of methylated quercetin derivatives and their reversal activities on P-gp- and BCRP-mediated multidrug resistance tumour cells, Eur. J. Med. Chem. 54 (2012) 413–422. doi:10.1016/j.ejmech.2012.05.026.
[36] Ernst Bayer and Bruno Krämer, Synthese von Quercetylenderivaten, Chem. Ber. 97 (1964) 1057–1068.
[37] M. Barontini, R. Bernini, F. Crisante, G. Fabrizi, Selective and efficient oxidative modifications of flavonoids with 2-iodoxybenzoic acid (IBX), Tetrahedron. 66 (2010) 6047–6053. doi:10.1016/j.tet.2010.06.014.
[38] R.N. Yadava, U.K. Vishwakarma, New biologically active allelochemical from seeds of Cassia absus Linn ., Indian J. Chem., Sect B. 52 (2013) 953–957.
[39] S.Y. Boateng, A.M. Seymour, N.S. Bhutta, M.J. Dunn, M.H. Yacoub, K.R. Boheler, Sub-antihypertensive doses of ramipril normalize sarcoplasmic reticulum calcium ATPase expression and function following cardiac hypertrophy in rats., J. Mol. Cell. Cardiol. 30 (1998) 2683–2694. doi:10.1006/jmcc.1998.0830.
[40] A.N. Jain, Surflex : Fully Automatic Flexible Molecular Docking Using a Molecular Similarity-Based Search Engine Surflex : Fully Automatic Flexible Molecular Docking Using a Molecular, J. Med. Chem. 46 (2003) 499 –511. doi:10.1021/jm020406h.
[41] Collaborative Computational Project, Number 4, “The CCP4 suite: programs for protein crystallography,” Acta Crystallogr., Sect. D Biol. Crystallogr. D50 (1994) 760–763.
[42] R. Wang, Y. Lu, S. Wang, Comparative evaluation of 11 scoring functions for molecular docking, J. Med. Chem. 46 (2003) 2287–2303. doi:10.1021/jm0203783.
[43] Y. Miyazaki, S. Matsunaga, J. Tang, Y. Maeda, M. Nakano, R.J. Philippe, et al., Novel 4-amino-furo[2,3-d]pyrimidines as Tie-2 and VEGFR2 dual inhibitors, Bioorganic Med. Chem. Lett. 15 (2005) 2203–2207. doi:10.1016/j.bmcl.2005.03.034.
[44] C. Wiesmann, H.W. Christinger, A.G. Cochran, B.C. Cunningham, W.J. Fairbrother, C.J. Keenan, et al., Crystal structure of the complex between VEGF and a receptor-blocking peptide, Biochemistry. 37 (1998) 17765–17772. doi:10.1021/bi9819327.
[45] M.J.D. Powell, Restart procedures for the conjugate gradient method, Math. Program. 12 (1977) 241–254. doi:10.1007/BF01593790.
[46] W. DeLano, Pymol: An open-source molecular graphics tool, CCP4 Newsl. Protein Crystallogr. (2002). http://www.ccp4.ac.uk/newsletters/newsletter40.pdf#page=44.
[47] L. Grell, C. Parkin, L. Slatest, P.A. Craig, EZ-Viz, a tool for simplifying molecular viewing in PyMOL, Biochem. Mol. Biol. Educ. 34 (2006) 402–407. doi:10.1002/bmb.2006.494034062672.
[48] K. Cowtan, P. Emsley, K.S. Wilson, From crystal to structure with CCP4, Acta Crystallogr. Sect. D Biol. Crystallogr. 67 (2011) 233–234. doi:10.1107/S0907444911007578.
[49] M.D. Winn, C.C. Ballard, K.D. Cowtan, E.J. Dodson, P. Emsley, P.R. Evans, et al., Overview of the CCP4 suite and current developments, Acta Crystallogr. Sect. D Biol. Crystallogr. 67 (2011) 235–242. doi:10.1107/S0907444910045749.