Ahuja, I., Rohloff, J., & Bones, A. M. (2010). Defense mechanisms of Brassicaceae: Implications for plant-insect interactions and potential for integrated pest management. A review. Agronomy for Sustainable Development, 30, 311–348.
Behrens, M., Gunn, H. C., Ramos, P. C. M., Meyerhof, W., & Wooding, S. P. (2013). Genetic, functional, and phenotypic diversity in TAS2R38-mediated bitter taste perception. Chemical Senses, 38, 475–484.
Bell, L., Oruna-Concha, M. J., & Wagstaff, C. (2015). Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chemistry, 172, 852–861.
Bell, L., Spadafora, N. D., Müller, C. T., Wagstaff, C., & Rogers, H. J. (2016). Use of TD- GC-TOF-MS to assess volatile composition during post-harvest storage in seven accessions of rocket salad (Eruca sativa). Food Chemistry, 194, 626–636.
Bell, L., & Wagstaff, C. (2014). Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). Journal of Agricultural and Food Chemistry, 62(20), 4481–4492.
Berger, R. G., Drawert, F., & Kollmannsberger, H. (1989). The flavour of cape gooseberry (Physalis peruviana L.). Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung, 188, 122–126.
Buttery, R. G., Teranishi, R., Ling, L. C., & Turnbaugh, J. G. (1990). Quantitative and sensory studies on tomato paste volatiles. Journal of Agricultural and Food Chemistry, 38, 336–340.
Carrapiso, A. I., Jurado, Á., Timón, M. L., & García, C. (2002). Odor-active compounds of Iberian hams with different aroma characteristics. Journal of Agricultural and Food Chemistry, 50, 6453–6458.
Cartea, M. E., Velasco, P., Obregon, S., Padilla, G., & de Haro, A. (2008). Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry, 69(2), 403–410.
Cataldi, T., Rubino, A., Lelario, F., & Bufo, S. A. (2007). Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Rapid Communications in Mass Spectrometry, 21(14), 2374–2388.
Cavaiuolo, M., & Ferrante, A. (2014). Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients, 6(4), 1519–1538.
D’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health- promoting vegetables: Glucosinolates and sensory attributes of rocket salads and related Diplotaxis and Eruca species. Journal of the Science of Food & Agriculture, 89(4), 713–722.
Drewnowski, A., & Gomez-Carneros, C. (2000). Bitter taste, phytonutrients, and the consumer: A review. American Journal of Clinical Nutrition, 72(6), 1424–1435.
Elmore, J. S., Koutsidis, G., Dodson, A. T., Mottram, D. S., & Wedzicha, B. L. (2005). Measurement of acrylamide and its precursors in potato, wheat, and rye model systems. Journal of Agricultural and Food Chemistry, 53(4), 1286–1293.
Higdon, J. V., Delage, B., Williams, D. E., & Dashwood, R. H. (2007). Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacological Research, 55(3), 224–236.
Holst, B., & Williamson, G. (2004). A critical review of the bioavailability of glucosinolates and related compounds. Natural Product Reports, 21(3), 425–447. Hufnagel, J. C., & Hofmann, T. (2008). Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine. Journal of
Agricultural and Food Chemistry, 56, 1376–1386.
Jakše, M., Hacin, J., & Kacjan Maršic ́, N. (2013). Production of rocket (Eruca sativa
Mill.) on plug trays and on a floating system in relation to reduced nitrate content/Pridelava navadne rukvice (Eruca sativa Mill.) v gojitvenih plošcˇah in na plavajocˇem sistemu in mozˇnosti redukcije vsebnosti nitrata. Acta Agriculturae Slovenica, 101(1), 59–68.
Jimenez, E., Lanza, B., Antinolo, M., & Albaladejo, J. (2009). Photooxidation of leaf- wound oxygenated compounds, 1-penten-3-ol, (Z)-3-hexen-1-ol, and 1- penten-3-one, initiated by OH radicals and sunlight. Environmental Science & Technology, 43(6), 1831–1837.
Jinap, S., & Hajeb, P. (2010). Glutamate. Its applications in food and contribution to health. Appetite, 55(1), 1–10.
Jirovetz, L., Smith, D., & Buchbauer, G. (2002). Aroma compound analysis of Eruca sativa (Brassicaceae) SPME headspace leaf samples using GC, GC-MS, and olfactometry. Journal of Agricultural and Food Chemistry, 50(16), 4643–4646.
Jones, R. B., Faragher, J. D., & Winkler, S. (2006). A review of the influence of postharvest treatments on quality and glucosinolate content in broccoli (Brassica oleracea var. italica) heads. Postharvest Biology and Technology, 41(1), 1–8.
Kirimura, J., Shimizu, A., Kimizuka, A., Ninomiya, T., & Katsuya, N. (1969). Contribution of peptides and amino acids to the taste of foods. Journal of Agricultural & Food Chemistry, 17(4), 689–695.
Kühn, B. F., & Thybo, A. K. (2001). The influence of sensory and physiochemical quality on Danish children’s preferences for apples. Food Quality and Preference, 12, 543–550.
La Quèrè, J.-L., Gierezynski, I., Langlois, D., & Sèmon, E. (2006). Nosespace with an ion mass spectrometer – Quantitative aspects. Flavour science. Recent advances & trends. Amsterdam, The Netherlands: Elsevier.
Laaksonen, O., Ahola, J., & Sandell, M. (2013). Explaining and predicting individually experienced liking of berry fractions by the hTAS2R38 taste receptor genotype. Appetite, 61, 85–96.
Lignou, S., Parker, J. K., Oruna-Concha, M. J., & Mottram, D. S. (2013). Flavour profiles of three novel acidic varieties of muskmelon (Cucumis melo L.). Food Chemistry, 139(1–4), 1152–1160.
Lipchock, S., & Mennella, J. (2013). Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells. The American Journal of Clinical Nutrition, 12, 1136–1143.
Maga, J., Moore, F., & Oshima, N. (1976). Yield, nitrate levels and sensory properties of spinach as influenced by organic and mineral nitrogen fertiliser levels. Journal of the Science of Food & Agriculture, 27(2), 109–114.
Nishimura, T., & Kato, H. (1988). Taste of free amino acids and peptides. Food Reviews International, 4(2), 175–194.
Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F., & D’Antuono, L. F. (2011). Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. Journal of the Science of Food and Agriculture, 91(15), 2858–2864.
Podsedek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT-Food Science and Technology, 40(1), 1–11.
Saha, S., Hollands, W., Teucher, B., Needs, P. W., Narbad, A., Ortori, C. A., Barrett, D. A., et al. (2012). Isothiocyanate concentrations and interconversion of sulforaphane to erucin in human subjects after consumption of commercial frozen broccoli compared to fresh broccoli. Molecular Nutrition and Food Research, 56, 1906–1916.
Scharbert, S., Holzmann, N., & Hofmann, T. (2004). Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. Journal of Agricultural and Food Chemistry, 52, 3498–3508.
Schwarz, B., & Hofmann, T. (2007). Sensory-guided decomposition of red currant juice (Ribes rubrum) and structure determination of key astringent compounds. Journal of Agricultural and Food Chemistry, 55, 1394–1404.
Soga, T., & Ross, G. A. (1999). Simultaneous determination of inorganic anions, organic acids, amino acids and carbohydrates by capillary electrophoresis. Journal of Chromatography A, 837(1–2), 231–239.
Solms, J. (1969). Taste of amino acids, peptides, and proteins. Journal of Agricultural and Food Chemistry, 17(4), 686–688.
Swanston, J. (2000). Ullmann’s encyclopedia of industrial chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
Tandon, K. S., Baldwin, E. A., & Shewfelt, R. L. (2000). Aroma perception of individual volatile compounds in fresh tomatoes (Lycopersicon esculentum, Mill.) as affected by the medium of evaluation. Postharvest Biology and Technology, 20 (3), 261–268.
Traka, M. H., Saha, S., Huseby, S., Kopriva, S., Walley, P. G., Barker, G. C., Moore, J., et al. (2013). Genetic regulation of glucoraphanin accumulation in Beneforté broccoli. The New Phytologist, 198, 1085–1095.