Campbell, J. M., Fahey, J., George C., & Wolf, B. W. (1997). Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. The Journal of Nutrition, 127, 130–136.
Chassard, C., Goumy, V., Leclerc, M., Del'homme, C., & Bernalier-Donadille, A. (2007). Characterization of the xylan-degrading microbial community from human faeces. FEMS Microbiology Ecology, 61, 121-131.
Childs, C. E., Roytio, H., Alhoniemi, E., Fekete, A. A., Forssten, S. D., Hudjec, N., Lim, Y. N., Steger, C. J., Yaqoob, P., Tuohy, K. M., Rastall, R. A., Ouwehand, A. C., & Gibson, G. R. (2014). Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: A double-blind, placebo-controlled, randomised, factorial cross-over study. British Journal of Nutrition, 111, 1945-1956.
Chung, Y.-C., Hsu, C.-K., Ko, C.-Y., & Chan, Y.-C. (2007). Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutrition Research, 27, 756-761.
Ciucanu, I., & Kerek, F. (1984). A simple and rapid method for the permethylation of carbohydrates. Carbohydrate Research, 131, 209-217.
Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerström, R., Mättö, J., Saarela, M., Mattila-Sandholm, T., & Poutanen, K. (2002). In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. Journal of the Science of Food and Agriculture, 82, 781-789.
Daims, H., Brühl, A., Amann, R., Schleifer, K.-H., & Wagner, M. (1999). The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set. Systematic and Applied Microbiology, 22, 434-444.
Duncan, S. H., Barcenilla, A., Stewart, C. S., Pryde, S. E., & Flint, H. J. (2002). Acetate utilization and butyryl coenzyme A (CoA):Acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Applied and Environmental Microbiology, 68, 5186-5190.
Duncan, S. H., Holtrop, G., Lobley, G. E., Calder, A. G., Stewart, C. S., & Flint, H. J. (2004). Contribution of acetate to butyrate formation by human faecal bacteria. British Journal of Nutrition, 91, 915-923.
Ebringerová, A., Hromadkova, Z., & Heinze, T. (2005). Polysaccharides I: Structure, characterization and use. Advances In Polymer Science, 186, 1-67.
Englyst, H. N., Hay, S., & Macfarlane, G. T. (1987). Polysaccharide breakdown by mixed populations of human faecal bacteria. FEMS Microbiology Letters, 45, 163-171.
Falony, G., Calmeyn, T., Leroy, F., & De Vuyst, L. (2009). Coculture fermentations of Bifidobacterium species and Bacteroides thetaiotaomicron reveal a mechanistic insight into the prebiotic effect of inulin-type fructans. Applied and Environmental Microbiology, 75, 2312-2319.
Franks, A. H., Harmsen, H. J. M., Raangs, G. C., Jansen, G. J., Schut, F., & Welling, G. W. (1998). Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Applied and Environmental Microbiology, 64, 3336-3345.
Gullón, P., Moura, P., Esteves, M. P., Girio, F. M., Domínguez, H., & Parajó, J. C. (2008). Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria. Journal of Agricultural and Food Chemistry, 56, 7482-7487.
Harmsen, H. J. M., Elfferich, P., Schut, F., & Welling, G. W. (1999). A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microbial Ecology in Health and Disease, 11, 3-12.
Harmsen, H. J. M., Wildeboer-Veloo, A. C. M., Grijpstra, J., Knol, J., Degener, J. E., & Welling, G. W. (2000). Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Applied and Environmental Microbiology, 66, 4523-4527.
Ho, A. L., Carvalheiro, F., Duarte, L. C., Roseiro, L. B., Charalampopoulos, D., & Rastall, R. A. (2014). Production and purification of xylooligosaccharides from oil palm empty fruit bunch fibre by a non-isothermal process. Bioresource Technology, 152, 526-529.
Hold, G. L., Schwiertz, A., Aminov, R. I., Blaut, M., & Flint, H. J. (2003). Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Applied and Environmental Microbiology, 69, 4320-4324.
Hughes, S. A., Shewry, P. R., Li, L., Gibson, G. R., Sanz, M. L., & Rastall, R. A. (2007). In vitro fermentation by human fecal microflora of wheat arabinoxylans. Journal of Agricultural and Food Chemistry, 55, 4589-4595.
Kabel, M. A., Kortenoeven, L., Schols, H. A., & Voragen, A. G. J. (2002a). In vitro fermentability of differently substituted xylo-oligosaccharides. Journal of Agricultural and Food Chemistry, 50, 6205-6210.
Kabel, M. A., Schols, H. A., & Voragen, A. G. J. (2002b). Complex xylo-oligosaccharides identified from hydrothermally treated Eucalyptus wood and brewery's spent grain. Carbohydrate Polymers, 50, 191-200.
Kosik, O., Bromley, J. R., Busse-Wicher, M., Zhang, Z., and Dupree, P. (2012). Studies of enzymatic cleavage of cellulose using polysaccharide analysis by carbohydrate gel electrophoresis (PACE). Methods in Enzymology, 510, 51-67.
Langendijk, P. S., Schut, F., Jansen, G. J., Raangs, G. C., Kamphuis, G. R., Wilkinson, M. H., & Welling, G. W. (1995). Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Applied and Environmental Microbiology, 61, 3069-3075.
Mäkeläinen, H., Forssten, S., Saarinen, M., Stowell, J., Rautonen, N., & Ouwehand, A. C. (2010a). Xylo-oligosaccharides enhance the growth of bifidobacteria and Bifidobacterium lactis in a simulated colon model. Beneficial Microbes, 1, 81-91.
Mäkeläinen, H., Saarinen, M., Stowell, J., Rautonen, N., & Ouwehand, A. C. (2010b). Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Beneficial Microbes, 1, 139-148.
Manz, W., Amann, R., Ludwig, W., Vancanneyt, M., & Schleifer, K.-H. (1996). Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology, 142, 1097-1106.
Marsh, J. T., Tryfona, T., Powers, S. J., Stephens, E., Dupree, P., Shewry, P. R., & Lovegrove, A. (2011). Determination of the N-glycosylation patterns of seed proteins: Applications to determine the authenticity and substantial equivalence of genetically modified (GM) crops. Journal of Agricultural and Food Chemistry, 59, 8779-8788.
Moura, P., Barata, R., Carvalheiro, F., Gírio, F., Loureiro-Dias, M. C., & Esteves, M. P. (2007). In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT - Food Science and Technology, 40, 963-972.
Moure, A., Gullón, P., Domínguez, H., & Parajó, J. C. (2006). Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochemistry, 41, 1913-1923.
Nabarlatz, D., Ebringerová, A., & Montané, D. (2007). Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohydrate Polymers, 69, 20-28.
Okazaki, M., Fujikawa, S., & Matsumoto, N. (1990). Effect of xylooligosaccharide on the growth of bifidobacteria. Bifidobacteria and Microflora, 9, 77-86.
Palframan, R., Gibson, G. R., & Rastall, R. A. (2003a). Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. Letters in Applied Microbiology, 37, 281-284.
Palframan, R. J., Gibson, G. R., & Rastall, R. A. (2003b). Carbohydrate preferences of Bifidobacterium species isolated from human gut. Current Issues in Intestinal Microbiology, 4, 71-75.
Parajó, J. C., Garrote, G., Cruz, J. M., & Domínguez, H. (2004). Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends in Food Science and Technology, 15, 115-120.
Rycroft, C. E., Jones, M. R., Gibson, G. R., & Rastall, R. A. (2001). A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. Journal of Applied Microbiology, 91, 878-887.
Singleton, V. L., & Rossi, J. A. J. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2006). Determination of sugars, by-products, and degradation products in liquid fraction process samples. Laboratory Analytical Procedure (NREL/TP-510-42623). Colorado: National Renewable Energy Laboratory.
Van Craeyveld, V., Swennen, K., Dornez, E., Van de Wiele, T., Marzorati, M., Verstraete, W., Delaedt, Y., Onagbesan, O., Decuypere, E., Buyse, J., De Ketelaere, B., F. Broekaert, W., Delcour, J. A., & Courtin, C. M. (2008). Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. The Journal of Nutrition, 138, 2348–2355.
Walker, A. W., Duncan, S. H., McWilliam Leitch, E. C., Child, M. W., & Flint, H. J. (2005). pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Applied and Environmental Microbiology, 71, 3692-3700.