Accessibility navigation

Investigating flavonoids as molecular templates for the design of small-molecule inhibitors of cell signaling

Wright, B., Tindall, M. J., Lovegrove, J. A. ORCID: and Gibbins, J. M. ORCID: (2013) Investigating flavonoids as molecular templates for the design of small-molecule inhibitors of cell signaling. Journal of Food Science, 78 (12). N1921-N1928. ISSN 1750-3841

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1111/1750-3841.12293


Epidemiological and clinical trials reveal compelling evidence for the ability of dietary flavonoids to lower cardiovascular disease risk. The mechanisms of action of these polyphenolic compounds are diverse, and of particular interest is their ability to function as protein and lipid kinase inhibitors. We have previously described structure-activity studies that reinforce the possibility for using flavonoid structures as templates for drug design. In the present study, we aim to begin constructing rational screening strategies for exploiting these compounds as templates for the design of clinically relevant, antiplatelet agents. We used the platelet as a model system to dissect the structural influence of flavonoids, stilbenes, anthocyanidins, and phenolic acids on inhibition of cell signaling and function. Functional groups identified as relevant for potent inhibition of platelet function included at least 2 benzene rings, a hydroxylated B ring, a planar C ring, a C ring ketone group, and a C-2 positioned B ring. Hydroxylation of the B ring with either a catechol group or a single C-4' hydroxyl may be required for efficient inhibition of collagen-stimulated tyrosine phosphorylated proteins of 125 to 130 kDa, but may not be necessary for that of phosphotyrosine proteins at approximately 29 kDa. The removal of the C ring C-3 hydroxyl together with a hydroxylated B ring (apigenin) may confer selectivity for 37 to 38 kDa phosphotyrosine proteins. We conclude that this study may form the basis for construction of maps of flavonoid inhibitory activity on kinase targets that may allow a multitargeted therapeutic approach with analogue counterparts and parent compounds.

Item Type:Article
Divisions:Interdisciplinary centres and themes > Institute for Cardiovascular and Metabolic Research (ICMR)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Human Nutrition Research Group
ID Code:35775

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation