Accessibility navigation


Fish oil supplementation alters numbers of circulating endothelial progenitor cells and micro particles independent of eNOS genotype

Wu, S.-Y., Mayneris-Perxachs, J., Lovegrove, J. A. ORCID: https://orcid.org/0000-0001-7633-9455, Todd, S. ORCID: https://orcid.org/0000-0002-9981-923X and Yaqoob, P. (2014) Fish oil supplementation alters numbers of circulating endothelial progenitor cells and micro particles independent of eNOS genotype. American Journal of Clinical Nutrition, 100 (5). pp. 1232-1243. ISSN 1938-3207

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.3945/ajcn.114.088880

Abstract/Summary

Background Emerging cellular markers of endothelial damage and repair include endothelial microparticles (EMPs) and endothelial progenitor cells (EPCs) respectively. Effects of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and influence of genetic background on these markers are not known. Objective This study investigated the effects of fish oil supplementation on both classical and novel markers of endothelial function in subjects prospectively genotyped for the Asp298 eNOS polymorphism and at moderate risk of CVD. Design 84 subjects with moderate risk of CVD (n=40 GG and n=44 GT/TT) completed a randomized, double-blind, placebo-controlled, 8-week cross-over trial of fish oil supplementation providing 1.5 g/d LC n-3 PUFA. Effects of genotype and fish oil supplementation on the blood lipid profile, inflammatory markers, vascular function (EndoPAT) and numbers of circulating EPCs and EMP (flow cytometry) were assessed. Results There was no significant effect of fish oil supplementation on blood pressure, plasma lipids or plasma glucose, although there was a trend (P = 0.069) towards a decrease in plasma TG concentration after FO supplementation compared to placebo. GT/TT subjects tended to have higher levels of total cholesterol and LDL-cholesterol, but vascular function was not affected by either treatment or eNOS genotype. Biochemical markers of endothelial function were also unaffected by treatment and eNOS genotype. In contrast, there was a significant effect of fish oil supplementation on cellular markers of endothelial function. Fish oil supplementation increased numbers of EPCs and reduced numbers of EMPs relative to the placebo, potentially favouring maintenance of endothelial integrity. There was no influence of genotype for any of the cellular markers of endothelial function, indicating that the effects of fish oil supplementation were independent of eNOS genotype. Conclusions Emerging cellular markers of endothelial damage, integrity and repair appear to be sensitive to potentially beneficial modification by dietary n-3 PUFA.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Institute for Cardiovascular and Metabolic Research (ICMR)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Human Nutrition Research Group
ID Code:37521
Publisher:American Society for Nutrition

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation