[1] Kvaavik, E., Batty, G. D., Ursin, G., Huxley, R., Gale, C. R., Influence of individual and combined health behaviors on total and cause-specific mortality in men and women: the United Kingdom Health and Lifestyle Survey. Archives of Internal Medicine 2010, 170, 711-718.
[2] Jenab, M., Slimani, N., Bictash, M., Ferrari, P., Bingham, S., Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet 2009, 125, 507-525.
[3] Kipnis, V., Midthune, D., Freedman, L., Bingham, S., et al., Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutrition 2002, 5, 915-923.
[4] Marshall, J. R., Chen, Z., Diet and health risk: risk patterns and disease-specific associations. The American Journal of Clinical Nutrition 1999, 69, 1351s-1356s.
[5] Djoussé, L., Is plasma pentadecanoic acid a reasonable biomarker of dairy consumption? Journal of the American Heart Association 2013, 2.
[6] Mozaffarian, D., de Oliveira Otto, M. C., Lemaitre, R. N., Fretts, A. M., et al., trans-Palmitoleic acid, other dairy fat biomarkers, and incident diabetes: the Multi-Ethnic Study of Atherosclerosis (MESA). The American Journal of Clinical Nutrition 2013, 97, 854-861.
[7] Tong, X., Dong, J. Y., Wu, Z. W., Li, W., Qin, L. Q., Dairy consumption and risk of type 2 diabetes mellitus: a meta-analysis of cohort studies. European Journal of Clinical Nutrition 2011, 65, 1027-1031.
[8] Wolk, A., Vessby, B., Ljung, H., Barrefors, P., Evaluation of a biological marker of dairy fat intake. The American Journal of Clinical Nutrition 1998, 68, 291-295.
[9] Wu, Z., Palmquist, D. L., Synthesis and biohydrogenation of fatty acids by ruminal microorganisms in vitro. Journal of Dairy Science 1991, 74, 3035-3046.
[10] Baylin, A., Kabagambe, E. K., Siles, X., Campos, H., Adipose tissue biomarkers of fatty acid intake. The American Journal of Clinical Nutrition 2002, 76, 750-757.
[11] Smedman, A. E. M., Gustafsson, I.-B., Berglund, L. G. T., Vessby, B. O. H., Pentadecanoic acid in serum as a marker for intake of milk fat: relations between intake of milk fat and metabolic risk factors. The American Journal of Clinical Nutrition 1999, 69, 22-29.
[12] Wolk, A., Furuheim, M., Vessby, B., Fatty acid composition of adipose tissue and serum lipids are valid biological markers of dairy fat intake in men. The Journal of Nutrition 2001, 131, 828-833.
[13] Biong, A. S., Berstad, P., Pedersen, J. I., Biomarkers for intake of dairy fat and dairy products. European Journal of Lipid Science and Technology 2006, 108, 827-834.
[14] de Oliveira Otto, M. C., Nettleton, J. A., Lemaitre, R. N., M. Steffen, L., et al., Biomarkers of Dairy Fatty Acids and Risk of Cardiovascular Disease in the Multi‐Ethnic Study of Atherosclerosis. Journal of the American Heart Association 2013, 2.
[15] Sun, Q., Ma, J., Campos, H., Hu, F. B., Plasma and erythrocyte biomarkers of dairy fat intake and risk of ischemic heart disease. The American Journal of Clinical Nutrition 2007, 86, 929-937.
[16] Aslibekyan, S., Campos, H., Baylin, A., Biomarkers of dairy intake and the risk of heart disease. Nutrition, Metabolism and Cardiovascular Diseases 2012, 22, 1039-1045.
[17] Abdullah, M. M. H., Cyr, A., Lépine, M.-C., Labonté, M.-È., et al., Recommended dairy product intake modulates circulating fatty acid profile in healthy adults: a multi-centre cross-over study. British Journal of Nutrition 2015, FirstView, 1-10.
[18] Saadatian-Elahi, M., Slimani, N., Chajès, V., Jenab, M., et al., Plasma phospholipid fatty acid profiles and their association with food intakes: results from a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition. The American Journal of Clinical Nutrition 2009, 89, 331-346.
[19] Brevik, A., Veierod, M. B., Drevon, C. A., Andersen, L. F., Evaluation of the odd fatty acids 15:0 and 17:0 in serum and adipose tissue as markers of intake of milk and dairy fat. European Journal of Clinical Nutrition 2005, 59, 1417-1422.
[20] Baylin, A., Kim, M. K., Donovan-Palmer, A., Siles, X., et al., Fasting whole blood as a biomarker of essential fatty acid intake in epidemiologic studies: comparison with adipose tissue and plasma. American Journal of Epidemiology 2005, 162, 373-381.
[21] Celis-Morales, C., Livingstone, K. M., Marsaux, C. F. M., Forster, H., et al., Design and baseline characteristics of the Food4Me Proof of Principle Study: a web-based randomized controlled trial of personalised nutrition in seven european countries Submitted 2014.
[22] Livingstone, K., Celis-Morales, C., Navas-Carretero, S., San-Cristobal, R., et al., Profile of European adults interested in internet-based personalised nutrition: the Food4Me study. Eur J Nutr 2015, 1-11.
[23] Bingham, S. A., Gill, C., Welch, A., Cassidy, A., et al., Validation of dietary assessment methods in the UK arm of EPIC using weighed records, and 24-hour urinary nitrogen and potassium and serum vitamin C and carotenoids as biomarkers. International Journal of Epidemiology 1997, 26 Suppl 1, S137-151.
[24] Forster, H. F., Gallagher, C., O’Donovan, C., Woolhead, C., et al., Online dietary intake estimation: the Food4Me Food Frequency Questionnaire. Journal of Medical Internet Research 2014, 16, e150.
[25] Fallaize, R., Forster, H., Macready, L., Walsh, C., et al., Online dietary intake estimation: reproducibility and validity of the Food4Me food frequency questionnaire against a 4-day weighed food record. Journal of Medical Internet Research 2014, 16, e190.
[26] Goldberg, G., Black, A., Jebb, S., Cole, T., et al., Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. European Journal of Clinical Nutrition 1991, 45, 569-581.
[27] Wooldridge, J. M., Introductory Econometrics. A Modern Approach. , Thomson South-Western, Mason, OH 2006.
[28] Xia, J., Broadhurst, D., Wilson, M., Wishart, D., Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 2013, 9, 280-299.
[29] O’Gorman, A., Morris, C., Ryan, M., O’Grada, C. M., et al., Habitual dietary intake impacts on the lipidomic profile. Journal of Chromatography B 2014, 966, 140-146.
[30] StataCorp, StataCorp. LP, College Station, TX 2011.
[31] Brevik, A., Veierod, M. B., Drevon, C. A., Andersen, L. F., Evaluation of the odd fatty acids 15:0 and 17:0 in serum and adipose tissue as markers of intake of milk and dairy fat. Eur J Clin Nutr 2005, 59, 1417-1422.
[32] Fusconi E, Pala V, Riboli E, Vineis P, et al., Relationship between plasma fatty acid composition and diet over previous years in the Italian centers of the European Prospective Investigation into Cancer and Nutrition (EPIC). Tumori 2003, 89, 624-635.
[33] Freedman, L. S., Commins, J. M., Moler, J. E., Arab, L., et al., Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. American Journal of Epidemiology 2014, 180, 172-188.
[34] Marangoni, F., Colombo, C., Galli, C., A method for the direct evaluation of the fatty acid status in a drop of blood from a fingertip in humans: applicability to nutritional and epidemiological studies. Anal Biochem 2004, 326, 267-272.
[35] Liu, G., Muhlhausler, B. S., Gibson, R. A., A method for long term stabilisation of long chain polyunsaturated fatty acids in dried blood spots and its clinical application. Prostaglandins, leukotrienes, and essential fatty acids 2014, 91, 251-260.
[36] Huth, P. J., Park, K. M., Influence of dairy product and milk fat consumption on cardiovascular disease risk: A review of the evidence. Advances in Nutrition: An International Review Journal 2012, 3, 266-285.
[37] Forouhi, N. G., Koulman, A., Sharp, S. J., Imamura, F., et al., Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. The Lancet Diabetes & Endocrinology 2014, 2, 810-818.
[38] Santaren, I. D., Watkins, S. M., Liese, A. D., Wagenknecht, L. E., et al., Serum pentadecanoic acid (15:0), a short-term marker of dairy food intake, is inversely associated with incident type 2 diabetes and its underlying disorders. The American Journal of Clinical Nutrition 2014, 100, 1532-1540.